Featured Research

from universities, journals, and other organizations

Heat-shock factor reveals its unique role in supporting highly malignant cancers

Date:
August 2, 2012
Source:
Whitehead Institute for Biomedical Research
Summary:
Researchers have found that an ancient, highly conserved cell survival factor drives expression of a specific set of genes that is strongly associated with metastasis and death in patients with breast, colon, and lung cancers.

Whitehead Institute researchers have found that increased expression of a specific set of genes is strongly associated with metastasis and death in patients with breast, colon, and lung cancers. Not only could this finding help scientists identify a gene profile predictive of patient outcomes and response to treatment, it could also guide the development of therapeutics to target multiple cancer types.

Related Articles


The genes identified are activated by a transcription factor called heat-shock factor 1 (HSF1) as part of a transcriptional program distinct from HSF1's well-known role in mediating the response of normal cells to elevated temperature.

In normal cells, a variety of stressors, including heat, hypoxia, and toxins, activate HSF1 leading to increased expression of so-called heat-shock or chaperone proteins that work to maintain protein homeostasis in stressed cells. Scientists have known for some time that many cancer cells have higher levels of chaperones and that elevation of these proteins is important for survival and proliferation of tumor cells.

Now, however, researchers in the lab of Whitehead Member Susan Lindquist report that HSF1 supports cancers not only by increasing chaperones, but by unexpectedly regulating a broad range of cellular functions that are important for the malignant behavior of tumor cells. This activity allows for the development of the most aggressive forms of three of the most prevalent cancers -- breast, lung, and colon. The findings, published this week in the journal Cell, build on earlier research from the Lindquist lab showing that elevated levels of HSF1 are associated with poorer prognosis in some forms of breast cancer.

"This work shows that HSF1 is fundamentally important across a broad range of human cancers, cancers of various types from all over the body turn on this response," says Sandro Santagata, a postdoctoral researcher in the Lindquist lab. "That's very interesting. It suggests how important HSF1 must be for helping tumors become their very worst."

In addition to confirming that this gene activation program differs from that associated with heat shock, the researchers found that in many tumors, it becomes active in virtually all of the tumor's cells.

"This demonstrates it isn't simply regions of microenvironmental stress within a tumor that drive HSF1 activity, but rather that HSF1 activation is wired into the core circuitry of cancer cells, orchestrating a distinct gene regulatory program that enables particularly aggressive phenotypes," says Marc Mendillo, a postdoctoral researcher in the Lindquist lab. "This suggests HSF1 itself could be a great therapeutic target."

Luke Whitesell, an oncologist and senior research scientist in the Lindquist lab, concurs that HSF1 is a conceptually appealing target for therapeutic intervention, noting that suppressing HSF1 for short periods of time should have minimal consequences on normal cells. However, he adds, actually developing such a drug could be problematic.

"Coming up with a drug that disrupts HSF1's interaction with DNA, which is how it activates all of these genes, that is going to be really tough," says Whitesell. "No one has come up with a clinically useful drug that directly interrupts a transcription factor's interaction with DNA yet. But there are ways to disrupt a transcription factor's function indirectly, as opposed to directly targeting the protein itself. What we have now from this research is a new view of the landscape and the possibilities for drug discovery and development that are out there."

This research was supported by the Johnson & Johnson Focused Funding Program, the Marble Fund, the American Cancer Society New England Division-SpinOdyssey, the National Institutes of Health (NIH), the Brain Science Foundation, the V Foundation, GlaxoSmithKline, the National Cancer Institute (NCI), Department of Health and Human Services (HHS), the Breast Cancer Research Foundation, and the Department of Defense (DoD).


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. The original article was written by Nicole Giese Rura. Note: Materials may be edited for content and length.


Journal Reference:

  1. MarcL. Mendillo, Sandro Santagata, Martina Koeva, GeorgeW. Bell, Rong Hu, RullaM. Tamimi, Ernest Fraenkel, TanA. Ince, Luke Whitesell, Susan Lindquist. HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers. Cell, 2012; 150 (3): 549 DOI: 10.1016/j.cell.2012.06.031

Cite This Page:

Whitehead Institute for Biomedical Research. "Heat-shock factor reveals its unique role in supporting highly malignant cancers." ScienceDaily. ScienceDaily, 2 August 2012. <www.sciencedaily.com/releases/2012/08/120802122309.htm>.
Whitehead Institute for Biomedical Research. (2012, August 2). Heat-shock factor reveals its unique role in supporting highly malignant cancers. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/08/120802122309.htm
Whitehead Institute for Biomedical Research. "Heat-shock factor reveals its unique role in supporting highly malignant cancers." ScienceDaily. www.sciencedaily.com/releases/2012/08/120802122309.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins