Featured Research

from universities, journals, and other organizations

Why do organisms build tissues they seemingly never use?

Date:
August 10, 2012
Source:
Michigan State University
Summary:
Why, after millions of years of evolution, do organisms build structures that seemingly serve no purpose? A new study investigates the evolutionary reasons why organisms go through developmental stages that appear unnecessary.

Why, after millions of years of evolution, do organisms build structures that seemingly serve no purpose?

A study conducted at Michigan State University and published in the current issue of The American Naturalist investigates the evolutionary reasons why organisms go through developmental stages that appear unnecessary.

"Many animals build tissues and structures they don't appear to use, and then they disappear," said Jeff Clune, lead author and former doctoral student at MSU's BEACON Center of Evolution in Action. "It's comparable to building a roller coaster, razing it and building a skyscraper on the same ground. Why not just skip ahead to building the skyscraper?"

Why humans and other organisms retain seemingly unnecessary stages in their development has been debated between biologists since 1866. This study explains that organisms jump through these extra hoops to avoid disrupting a developmental process that works. Clune's team called this concept the "developmental disruption force." But Clune says it also could be described as "if the shoe fits, don't change a thing."

"In a developing embryo, each new structure is built in a delicate environment that consists of everything that has already developed," said Clune, who is now a postdoctoral fellow at Cornell University. "Mutations that alter that environment, such as by eliminating a structure, can thus disrupt later stages of development. Even if a structure is not actually used, it may set the stage for other functional tissues to grow properly."

Going back to the roller coaster metaphor, even though the roller coaster gets torn down, the organism needs the parts from that teardown to build the skyscraper, he added.

"An engineer would simply skip the roller coaster step, but evolution is more of a tinkerer and less of an engineer," Clune said. "It uses whatever parts that are lying around, even if the process that generates those parts is inefficient."

An interesting consequence is that newly evolved traits tend to get added at the end of development, because there is less risk of disrupting anything important. That, in turn, means that there is a similarity between the order things evolve and the order they develop.

A new technology called computational evolution allowed the team to conduct experiments that would be impossible to reproduce in nature.

Rather than observe embryos grow, the team of computer scientists and biologists used BEACON's Avida software to perform experiments with evolution inside a computer. The Avidians -- self-replicating computer programs -- mutate, compete for resources and evolve, mimicking natural selection in real-life organisms. Using this software, Clune's team observed as Avidians evolved to perform logic tasks. They recorded the order that those tasks evolved in a variety of lineages, and then looked at the order those tasks developed in the final, evolved organism.

They were able to help settle an age-old debate that developmental order does resemble evolutionary order, at least in this computationally evolving system. Because in a computer thousands of generations can happen overnight, the team was able to repeat this experiment many times to document that this similarity repeatedly occurs.

Additional MSU researchers contributing to the study included BEACON colleagues Richard Lenski, Robert Pennock and Charles Ofria. The research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeff Clune, Robert T. Pennock, Charles Ofria, Richard E. Lenski. Ontogeny Tends to Recapitulate Phylogeny in Digital Organisms. The American Naturalist, 2012; 180 (3): E54 DOI: 10.1086/666984

Cite This Page:

Michigan State University. "Why do organisms build tissues they seemingly never use?." ScienceDaily. ScienceDaily, 10 August 2012. <www.sciencedaily.com/releases/2012/08/120810133155.htm>.
Michigan State University. (2012, August 10). Why do organisms build tissues they seemingly never use?. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2012/08/120810133155.htm
Michigan State University. "Why do organisms build tissues they seemingly never use?." ScienceDaily. www.sciencedaily.com/releases/2012/08/120810133155.htm (accessed September 30, 2014).

Share This



More Fossils & Ruins News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

2,000 Year Old Pre-Inca Cloak on Display in Lima

2,000 Year Old Pre-Inca Cloak on Display in Lima

AFP (Sep. 27, 2014) A 2,000 year-old Pre-Inca cloak that is believed to represent an agricultural calendar of the Paracas culture is on display in Lima. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
Original Mozart Sonata Manuscript Found in Budapest

Original Mozart Sonata Manuscript Found in Budapest

AFP (Sep. 26, 2014) Considered lost for over two centuries, the original manuscript of one of the most famous works of Mozart's Sonata in A major has been uncovered in a library in Budapest. Duration: 01:04 Video provided by AFP
Powered by NewsLook.com
Underground Art Reveals WW1 Soldiers' Hopes and Fears

Underground Art Reveals WW1 Soldiers' Hopes and Fears

AFP (Sep. 25, 2014) American doctor and photographer Jeff Gusky reveals the underground quarries used by the soldiers of World War One, and the artwork they left behind which illustrates their hopes and fears. Duration: 02:15 Video provided by AFP
Powered by NewsLook.com
Raw: Ice Age Wooly Mammoth Remains for Sale

Raw: Ice Age Wooly Mammoth Remains for Sale

AP (Sep. 23, 2014) A rare, well-preserved skeleton of a woolly mammoth is going on sale at Summers Place Auctions hope the 11.5-foot tall, almost intact specimen will fetch between $245,000 to $409,000. (Sept. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins