Featured Research

from universities, journals, and other organizations

Engineered pancreatic tissues could lead to better transplants for diabetics

Date:
August 14, 2012
Source:
American Technion Society
Summary:
Researchers have built pancreatic tissue with insulin-secreting cells, surrounded by a three-dimensional network of blood vessels. When they transplanted the tissue into diabetic mice, the cells began functioning well enough to lower blood sugar levels in the mice. The engineered tissue could pave the way for improved tissue transplants to treat diabetes.

Technion researchers have built pancreatic tissue with insulin-secreting cells, surrounded by a three-dimensional network of blood vessels. The engineered tissue could pave the way for improved tissue transplants to treat diabetes.

Related Articles


The tissue created by Professor Shulamit Levenberg of the Technion-Israel Institute of Technology and her colleagues has some significant advantages over traditional transplant material that has been harvested from healthy pancreatic tissue.

The insulin-producing cells survive longer in the engineered tissue, and produce more insulin and other essential hormones, Levenberg and colleagues said. When they transplanted the tissue into diabetic mice, the cells began functioning well enough to lower blood sugar levels in the mice.

Transplantation of islets, the pancreatic tissue that contains hormone-producing cells, is one therapy considered for people with type 1 diabetes, who produce little or no insulin because their islets are destroyed by their own immune systems. But as with many tissue and organ transplants, donors are scarce, and there is a strong possibility that the transplantation will fail.

The well-developed blood vessel network built into the engineered tissue is key to its success, the researchers concluded. The blood vessels encourage cell-to-cell communication, by secreting growth hormones and other molecules, that significantly improve the odds that transplanted tissue will survive and function normally.

The findings confirm that the blood vessel network "provides key survival signals to pancreatic, hormone-producing cells even in the absence of blood flow," Levenberg and colleagues concluded in their study published in the journal PLoS One.

One reason transplants fail, Levenberg said, "is that the islets are usually transplanted without any accompanying blood vessels." Until the islets begin to connect with a person's own vascular system, they are vulnerable to starvation.

The 3-D system developed by the Technion researchers tackled this challenge by bringing together several different cell types to form a new transplantable tissue. Using a porous plastic material as the scaffold for the new tissue, the scientists seeded the scaffold with mouse islets, tiny blood vessel cells taken from human umbilical veins, and human foreskin cells that encouraged the blood vessels to develop a tube-like structure.

"The advantages provided by this type of environment are really profound," said Xunrong Luo, an islet transplantation specialist at the Northwestern University Feinberg School of Medicine. She noted that the number of islets used to lower blood sugar levels in the mice was nearly half the number used in a typical islet transplant.

Islets grown in these rich, multicellular environments lived three times as long on average as islets grown by themselves, Levenberg and colleagues found.

The technology "is still far from tests in humans," Levenberg said, but she noted that she and her colleagues are beginning to test the 3-D tissue scaffolds using human instead of mouse islets.

According to Northwestern's Luo, the 3-D model demonstrated in the study "will have important and rapid clinical implications" if the same results can be replicated with human cells. "This model system also provides a good platform to study the details and mechanisms that underlie successful transplantation."


Story Source:

The above story is based on materials provided by American Technion Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keren Kaufman-Francis, Jacob Koffler, Noa Weinberg, Yuval Dor, Shulamit Levenberg. Engineered Vascular Beds Provide Key Signals to Pancreatic Hormone-Producing Cells. PLoS ONE, 2012; 7 (7): e40741 DOI: 10.1371/journal.pone.0040741

Cite This Page:

American Technion Society. "Engineered pancreatic tissues could lead to better transplants for diabetics." ScienceDaily. ScienceDaily, 14 August 2012. <www.sciencedaily.com/releases/2012/08/120814110751.htm>.
American Technion Society. (2012, August 14). Engineered pancreatic tissues could lead to better transplants for diabetics. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2012/08/120814110751.htm
American Technion Society. "Engineered pancreatic tissues could lead to better transplants for diabetics." ScienceDaily. www.sciencedaily.com/releases/2012/08/120814110751.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins