Featured Research

from universities, journals, and other organizations

Engineered pancreatic tissues could lead to better transplants for diabetics

Date:
August 14, 2012
Source:
American Technion Society
Summary:
Researchers have built pancreatic tissue with insulin-secreting cells, surrounded by a three-dimensional network of blood vessels. When they transplanted the tissue into diabetic mice, the cells began functioning well enough to lower blood sugar levels in the mice. The engineered tissue could pave the way for improved tissue transplants to treat diabetes.

Technion researchers have built pancreatic tissue with insulin-secreting cells, surrounded by a three-dimensional network of blood vessels. The engineered tissue could pave the way for improved tissue transplants to treat diabetes.

The tissue created by Professor Shulamit Levenberg of the Technion-Israel Institute of Technology and her colleagues has some significant advantages over traditional transplant material that has been harvested from healthy pancreatic tissue.

The insulin-producing cells survive longer in the engineered tissue, and produce more insulin and other essential hormones, Levenberg and colleagues said. When they transplanted the tissue into diabetic mice, the cells began functioning well enough to lower blood sugar levels in the mice.

Transplantation of islets, the pancreatic tissue that contains hormone-producing cells, is one therapy considered for people with type 1 diabetes, who produce little or no insulin because their islets are destroyed by their own immune systems. But as with many tissue and organ transplants, donors are scarce, and there is a strong possibility that the transplantation will fail.

The well-developed blood vessel network built into the engineered tissue is key to its success, the researchers concluded. The blood vessels encourage cell-to-cell communication, by secreting growth hormones and other molecules, that significantly improve the odds that transplanted tissue will survive and function normally.

The findings confirm that the blood vessel network "provides key survival signals to pancreatic, hormone-producing cells even in the absence of blood flow," Levenberg and colleagues concluded in their study published in the journal PLoS One.

One reason transplants fail, Levenberg said, "is that the islets are usually transplanted without any accompanying blood vessels." Until the islets begin to connect with a person's own vascular system, they are vulnerable to starvation.

The 3-D system developed by the Technion researchers tackled this challenge by bringing together several different cell types to form a new transplantable tissue. Using a porous plastic material as the scaffold for the new tissue, the scientists seeded the scaffold with mouse islets, tiny blood vessel cells taken from human umbilical veins, and human foreskin cells that encouraged the blood vessels to develop a tube-like structure.

"The advantages provided by this type of environment are really profound," said Xunrong Luo, an islet transplantation specialist at the Northwestern University Feinberg School of Medicine. She noted that the number of islets used to lower blood sugar levels in the mice was nearly half the number used in a typical islet transplant.

Islets grown in these rich, multicellular environments lived three times as long on average as islets grown by themselves, Levenberg and colleagues found.

The technology "is still far from tests in humans," Levenberg said, but she noted that she and her colleagues are beginning to test the 3-D tissue scaffolds using human instead of mouse islets.

According to Northwestern's Luo, the 3-D model demonstrated in the study "will have important and rapid clinical implications" if the same results can be replicated with human cells. "This model system also provides a good platform to study the details and mechanisms that underlie successful transplantation."


Story Source:

The above story is based on materials provided by American Technion Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keren Kaufman-Francis, Jacob Koffler, Noa Weinberg, Yuval Dor, Shulamit Levenberg. Engineered Vascular Beds Provide Key Signals to Pancreatic Hormone-Producing Cells. PLoS ONE, 2012; 7 (7): e40741 DOI: 10.1371/journal.pone.0040741

Cite This Page:

American Technion Society. "Engineered pancreatic tissues could lead to better transplants for diabetics." ScienceDaily. ScienceDaily, 14 August 2012. <www.sciencedaily.com/releases/2012/08/120814110751.htm>.
American Technion Society. (2012, August 14). Engineered pancreatic tissues could lead to better transplants for diabetics. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/08/120814110751.htm
American Technion Society. "Engineered pancreatic tissues could lead to better transplants for diabetics." ScienceDaily. www.sciencedaily.com/releases/2012/08/120814110751.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins