Featured Research

from universities, journals, and other organizations

Plants' fungi allies may not help store climate change's extra carbon

Date:
August 30, 2012
Source:
Penn State
Summary:
Fungi found in plants may not be the answer to mitigating climate change by storing additional carbon in soils as some previously thought, according to plant biologists.

Fungi found in plants may not be the answer to mitigating climate change by storing additional carbon in soils as some previously thought.
Credit: © Alexandr / Fotolia

Fungi found in plants may not be the answer to mitigating climate change by storing additional carbon in soils as some previously thought, according to an international team of plant biologists.

Related Articles


The researchers found that increased carbon dioxide stimulates the growth of arbuscular mycorrhizal fungi (AMF) -- a type of fungus that is often found in the roots of most land plants -- which then leads to higher decomposition rates of organic materials, said Lei Cheng, post doctorate fellow in plant science, Penn State. This decomposition releases more carbon dioxide back into the air, which means that terrestrial ecosystems may have limited capacity to halt climate change by cleaning up excessive greenhouse gases, according to the researchers.

"Prior to our study, there have been few studies on whether elevated levels of carbon dioxide would stimulate organic carbon decomposition through AMF," said Cheng.

To study the effect of higher levels of carbon dioxide on AMF-mediated decomposition, the researchers conducted four experiments, two in greenhouses and two in fields to mimic Earth's expected North American atmospheric levels of carbon dioxide. They studied plots of a wild oat species, which is native to Eurasia and now common in North American grasslands, and wheat.

In the experiments, one plot was treated with AMF, the other did not have the fungus. Both plots were exposed to higher than currently existing carbon dioxide levels. After a ten-week gestation period, the sample of plants with AMF had 9 percent less carbon in the soil than the plot that was not treated with AMF, indicating that the carbon was released back into the atmosphere.

"Basically, we showed that elevated carbon dioxide increases carbon allocation to AMF to increase plant nitrogen uptake, and higher AMF facilitate organic residue decomposition which releases carbon dioxide into the air," said Cheng.

Elevated levels of carbon dioxide did significantly increase the size of the AMF colonies and carbon allocation underground, according to the researchers, who released their findings in the Aug. 30 issue of Science. However, the storage of carbon is offset by the role of AMF in facilitating decomposition.

"We used to think that this excess carbon would be sequestered in the soil," said Cheng. "So, that could help mitigate climate change, but it doesn't appear to be so."

They also studied the effect on a wheat and soybean field. In this experiment, Cheng said elevated levels of carbon dioxide increased both the size of AMF colonies and decomposition.

AMF colonies, which are found in the roots of 80 percent of land plant species, play a critical role in Earth's carbon cycle. The fungus receives and stores carbon -- a byproduct of the plant's photosynthesis -- from its host plant in its long vein-like structures. A plant stores about 20 percent of its carbon in AMF, according to Cheng.

AMF also help the plant capture nutrients, such as phosphorus and nitrogen.

"We found that, under elevated carbon dioxide levels, AMF supply more nitrogen to their host plants by acquiring ammonium directly from decomposing residues," Cheng said. "So the good news is that AMF's role in the plant's nitrogen uptake may open up the possibility of keeping carbon in the soil."

When there are higher carbon dioxide levels, the plant's ability to take in nitrates is inhibited and it then adds more carbon to fungi like AMF to acquire ammonium, said Cheng. The management of soil nitrogen transformations may provide a promising strategy of restoring levels of carbon sequestration under higher carbon dioxide conditions.

Cheng worked with Fitzgerald L. Booker, plant physiologist and professor of crop science, and Kent O. Burkey, plant physiologist and professor of crop science and botany, both of North Carolina State University and the U.S. Department of Agriculture-Agricultural Research Service; Thomas W. Rufty, Bayer Distinguished Professor, department of crop science, Shuijin Hu, associate professor of plant pathology, H. David Shew, professor of plant pathology, and Cong Tu, research specialist, all of North Carolina State University, and Lishi Zhou, department of plant pathology, North Carolina State University and State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Science.

The USDA supported this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Cheng, F. L. Booker, C. Tu, K. O. Burkey, L. Zhou, H. D. Shew, T. W. Rufty, S. Hu. Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2. Science, 2012; 337 (6098): 1084 DOI: 10.1126/science.1224304

Cite This Page:

Penn State. "Plants' fungi allies may not help store climate change's extra carbon." ScienceDaily. ScienceDaily, 30 August 2012. <www.sciencedaily.com/releases/2012/08/120830141345.htm>.
Penn State. (2012, August 30). Plants' fungi allies may not help store climate change's extra carbon. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2012/08/120830141345.htm
Penn State. "Plants' fungi allies may not help store climate change's extra carbon." ScienceDaily. www.sciencedaily.com/releases/2012/08/120830141345.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Yellow-Spotted Turtles Rescued from Trafficking

Yellow-Spotted Turtles Rescued from Trafficking

Reuters - Light News Video Online (Nov. 24, 2014) — Hundreds of Amazon River turtles released into the wild in Peru. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins