Science News
from research organizations

Too much protein HUWE1 causes intellectual disability

Date:
August 31, 2012
Source:
VIB
Summary:
Two to three percent of children are born with an intellectual disability. Possibly by a genetic defect, but in 80 percent of these cases, we do not know -- yet -- which genes are responsible. Increased production of the HUWE1 protein is the cause in some patients, new research shows.
Share:
       
FULL STORY

Two to three percent of children are born with an intellectual disability. Possibly by a genetic defect, but in 80 percent of these cases, we do not know -- yet -- which genes are responsible. VIB researchers at KU Leuven show that increased production of the HUWE1 protein is the cause in some patients.

"The fact that HUWE1 regulates the dose of several other proteins in the brains, has an important impact on the quest for new therapies. It would then be possible to intervene in these different proteins. Research into the role of HUWE1 has already started in the lab."

Defects on the X-chromosome

Intellectual disability can be due to external factors such as lack of oxygen at birth or to defects in the genetic material. In genetic (hereditary) causes, the exact identification of the defect is crucial for the medical supervision of the patient or to estimate the risk when having children. It is estimated that approximately 15% of patients have a defect that lies on the X-chromosome. This is called X-linked 'intellectual disability' (XLID). Despite extensive research, in half of XLID-patients, the responsible gene responsible has not yet been identified.

HUWE1 identified as culprit

Guy Froyen and his colleagues (VIB -- KU Leuven) continue their research to find new genes that may cause XLID. Several years ago, they showed that the duplication of a fragment of the X-chromosome leads to a too high concentration of HSD17B10 and HUWE1 proteins.

Guy Froyen: "We knew then that these two proteins could play an important role in the (development of) the memory center in the brains, but we did not yet know which gene was the cause for the increased dose of XLID. Through additional research, including the DNA of 6 additional families from Europe, Australia and South Africa, we now know that HUWE1 is the crucial factor, and that a concentration increase of HUWE1 leads to intellectual disability. "

Consequences for detecting and treating XLMR

The research by Guy Froyen and his colleagues offers new perspectives for the detection and treatment of XLID. This allows for tests to be designed with which the duplication of and errors in HUWE1 are searched. For the development of a new treatment for XLID, further research is required. First of all, scientists must better understand the role of HUWE1 in the body, more specifically in the brains.


Story Source:

The above post is reprinted from materials provided by VIB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guy Froyen, Stefanie Belet, Francisco Martinez, Cíntia Barros Santos-Rebouças, Matthias Declercq, Jelle Verbeeck, Lene Donckers, Siren Berland, Sonia Mayo, Monica Rosello, Márcia Mattos Gonçalves Pimentel, Natalia Fintelman-Rodrigues, Randi Hovland, Suely Rodrigues dos Santos, F. Lucy Raymond, Tulika Bose, Mark A. Corbett, Leslie Sheffield, Conny M.A. van Ravenswaaij-Arts, Trijnie Dijkhuizen, Charles Coutton, Veronique Satre, Victoria Siu, Peter Marynen. Copy-Number Gains of HUWE1 Due to Replication- and Recombination-Based Rearrangements. The American Journal of Human Genetics, 2012; 91 (2): 252 DOI: 10.1016/j.ajhg.2012.06.010

Cite This Page:

VIB. "Too much protein HUWE1 causes intellectual disability." ScienceDaily. ScienceDaily, 31 August 2012. <www.sciencedaily.com/releases/2012/08/120831083313.htm>.
VIB. (2012, August 31). Too much protein HUWE1 causes intellectual disability. ScienceDaily. Retrieved July 31, 2015 from www.sciencedaily.com/releases/2012/08/120831083313.htm
VIB. "Too much protein HUWE1 causes intellectual disability." ScienceDaily. www.sciencedaily.com/releases/2012/08/120831083313.htm (accessed July 31, 2015).

Share This Page: