Featured Research

from universities, journals, and other organizations

How gene profiling in emphysema is helping to find a cure

Date:
August 31, 2012
Source:
BioMed Central Limited
Summary:
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is thought to affect almost three million people in the UK. New research has identified genes whose activity is altered with increasing lung damage and, using a database of drug effects on gene activity (the Connectivity Map), finds that the compound Gly-His-Lys (GHK) affects the activity of these genes.

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is thought to affect almost three million people in the UK. New research published in BioMed Central's open access journal Genome Medicine has identified genes whose activity is altered with increasing lung damage and, using a database of drug effects on gene activity (the Connectivity Map), finds that the compound Gly-His-Lys (GHK) affects the activity of these genes. When tested on human cells from lungs damaged by emphysema, GHK was able to restore normal gene activity and repair cell function.

The strongest cause of COPD is smoking, and at least 25% of smokers will develop this disease. Tobacco smoke and other irritants cause oxidative stress and chronic inflammation, which over time results in emphysema, the destruction of lung alveolar cells. Without these cells, the lungs are not able to efficiently exchange oxygen for carbon dioxide, leaving the patient continuously short of breath and with low levels of oxygen in their blood.

In a ground breaking, multi-centre, study funded by the National Institute of Health (NIH), researchers used cells taken from lungs donated by patients undergoing double lung transplant, whose own lungs were irrevocably damaged by COPD. Profiling of these samples showed that 127 genes had changes in activity that was associated with worsening disease severity within the lung. As would be expected from the nature of the disease, several genes associated with inflammation, such as the genes involved in signalling to B-cells (the immune system cells which make antibodies), showed increased activity.

In contrast genes involved in maintaining cellular structure and normal cellular function, along with the growth factors TGFβ and VEGF, were down-regulated and showed decreased activity. This included genes which control the ability of the cells to stick together (cell adhesion), produce the protein matrix which normally surrounds the cells, and which promote the normal association between lung cells and blood vessels.

Dr Avrum Spira and Dr Marc Lenburg, who co-led this study from the Boston University School of Medicine, explained, "When we searched the Connectivity Map database, which is essentially a compendium of experiments that measure the effect of therapeutic compounds on every gene in the genome, we found that how genes were affected by the compound GHK, a drug known since the 1970s, was the complete opposite of what we had seen in the cells damaged by emphysema."

Dr Joshua Campbell explained, "What got us especially excited was that previous studies had shown that GHK could accelerate wound repair when applied to the skin. This made us think that GHK could have potential drug's as a therapy for COPD."

Prof James Hogg, from the University of British Columbia continued, "When we tested GHK on cells from the damaged lungs of smokers with COPD, we saw an improvement in the structure of their actin cytoskeleton and in cell adhesion, especially to collagen. GHK also restored the ability of cells to reorganise themselves to repair wounds and construct the contractile filaments essential for alveolar function."

GHK is a natural peptide found in human plasma, but the amount present decreases with age. While more testing needs to be done on its effects in COPD, these early results are very promising. Therapeutic studies with GHK in animal models of COPD are now underway with the ultimate goal of moving this compound into clinical trials. As more gene activity signatures are discovered, this method of matching drug to disease may provide a rapid method for discovering potential uses for existing drugs and compounds.


Story Source:

The above story is based on materials provided by BioMed Central Limited. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joshua D Campbell, John E McDonough, Julie E Zeskind, Tillie L Hackett, Dmitri V Pechkovsky, Corry-Anke Brandsma, Masaru Suzuki, John V Gosselink, Gang Liu, Yuriy O Alekseyev, Ji Xiao, Xiaohui Zhang, Shizu Hayashi, Joel D Cooper, Wim Timens, Dirkje S Postma, Darryl A Knight, Marc E Lenburg, James C Hogg and Avrum Spira. A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Medicine, 2012

Cite This Page:

BioMed Central Limited. "How gene profiling in emphysema is helping to find a cure." ScienceDaily. ScienceDaily, 31 August 2012. <www.sciencedaily.com/releases/2012/08/120831083317.htm>.
BioMed Central Limited. (2012, August 31). How gene profiling in emphysema is helping to find a cure. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/08/120831083317.htm
BioMed Central Limited. "How gene profiling in emphysema is helping to find a cure." ScienceDaily. www.sciencedaily.com/releases/2012/08/120831083317.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins