Featured Research

from universities, journals, and other organizations

Scientists design molecule that reverses some fragile X syndrome defects

Date:
September 4, 2012
Source:
Scripps Research Institute
Summary:
Scientists have designed a compound that shows promise as a potential therapy for one of the diseases closely linked to fragile X syndrome, a genetic condition that causes mental retardation, infertility, and memory impairment, and is the only known single-gene cause of autism.

Scientists on the Florida campus of The Scripps Research Institute have designed a compound that shows promise as a potential therapy for one of the diseases closely linked to fragile X syndrome, a genetic condition that causes mental retardation, infertility, and memory impairment, and is the only known single-gene cause of autism.

Related Articles


The study, published online ahead of print in the journal ACS Chemical Biology September 4, 2012, focuses on tremor ataxia syndrome, which usually affects men over the age of 50 and results in Parkinson's like-symptoms -- trembling, balance problems, muscle rigidity, as well as some neurological difficulties, including short-term memory loss and severe mood swings.

With fragile X syndrome, tremor ataxia syndrome, and related diseases, the root of the problem is a structural motif known as an "expanded triplet repeat" -- in which a series of three nucleotides are repeated more times than normal in the genetic code of affected individuals. This defect, located in the fragile X mental retardation 1 (FMR1) gene, causes serious problems with the processing of RNA.

"While there is an abundance of potential RNA drug targets in disease, no one has any idea how to identify or design small molecules to target these RNAs," said Mathew Disney, a Scripps Research associate professor who led the study. "We have designed a compound capable of targeting the right RNA and reversing the defects that cause fragile X-associated tremor ataxia."

Preventing Havoc

In tremor ataxia syndrome, the expanded triplet repeat leads to the expression of aberrant proteins that wreak widespread havoc. The repeats actually force the normal proteins that regulate RNA splicing -- necessary for production of the right kind of proteins -- into hiding.

The compound designed by Disney and his colleagues not only improves the RNA splicing process, but also minimizes the ability of repeats to wreak havoc on a cell.

"It stops the repeat-associated defects in cell culture," Disney said, "and at fairly high concentrations, it completely reverses the defects. More importantly, the compound is non-toxic to the cells. It looks like a very good candidate for development, but we're still in the early stages of testing."

Overall, this study reinforces Disney's earlier findings showing it is possible to identify and develop small molecules that target these traditionally recalcitrant RNA defects. In March of this year, Disney published a study in the Journal of the American Chemical Society that described a small molecule that inhibited defects in myotonic dystrophy type 1 RNA in both cellular and animal models of disease.

"We've gotten very good at targeting RNA with small molecules, something a lot of people said couldn't be done," Disney pointed out. "Our approach is evolving into a general method that can be used to target any disease that is associated with an RNA, including, perhaps, fragile X syndrome itself."

The new compound also works as a probe to better understand how these repeats cause fragile X syndrome and how they contribute to tremor ataxia, Disney added.

In addition to Disney, authors of the study, "Small Molecule That Targets r(CGG) and Improves Defects in 2 Fragile X‑Associated Tremor Ataxia Syndrome," include Biao Liu, Wang-Yong Yang, Tuan Tran, and Jessica L. Childs-Disney of Scripps Research; and Nicolas Charlet-Berguerand and Chantal Sellier of the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), the Centre National de la Recherche Scientifique (CNRS), and University of Strasbourg, Illkirch, France.

The study was funded by the National Institutes of Health (award numbers 3R01GM079235-02S1 and 1R01GM079235-01A2), INSERM, the French National Research Agency, and The Scripps Research Institute.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal References:

  1. Matthew D. Disney, Biao Liu, Wang-Yong Yang, Chantal Sellier, Tuan Tran, Nicolas Charlet-Berguerand, Jessica L. Childs-Disney. A Small Molecule That Targets r(CGG)expand Improves Defects in Fragile X-Associated Tremor Ataxia Syndrome. ACS Chemical Biology, 2012; 120904130429000 DOI: 10.1021/cb300135h
  2. Raman Parkesh, Jessica L. Childs-Disney, Masayuki Nakamori, Amit Kumar, Eric Wang, Thomas Wang, Jason Hoskins, Tuan Tran, David Housman, Charles A. Thornton, Matthew D. Disney. Design of a Bioactive Small Molecule That Targets the Myotonic Dystrophy Type 1 RNA via an RNA Motif–Ligand Database and Chemical Similarity Searching. Journal of the American Chemical Society, 2012; 134 (10): 4731 DOI: 10.1021/ja210088v

Cite This Page:

Scripps Research Institute. "Scientists design molecule that reverses some fragile X syndrome defects." ScienceDaily. ScienceDaily, 4 September 2012. <www.sciencedaily.com/releases/2012/09/120904170924.htm>.
Scripps Research Institute. (2012, September 4). Scientists design molecule that reverses some fragile X syndrome defects. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/09/120904170924.htm
Scripps Research Institute. "Scientists design molecule that reverses some fragile X syndrome defects." ScienceDaily. www.sciencedaily.com/releases/2012/09/120904170924.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins