Featured Research

from universities, journals, and other organizations

Bacteria on marine sponges can develop capacity to move and inhibit biofilm formation

Date:
September 6, 2012
Source:
University of Maryland Center for Environmental Science
Summary:
A new study shows that when enough bacteria get together in one place, they can make a collective decision to grow an appendage and swim away. This type of behavior has been seen for the first time in marine sponges, and could lead to an understanding of how to break up harmful bacterial biofilms, such as plaque on teeth or those found on internal medical devices like artificial heart valves.

A new study shows that when enough bacteria get together in one place, they can make a collective decision to grow an appendage and swim away. This type of behavior has been seen for the first time in marine sponges, and could lead to an understanding of how to break up harmful bacterial biofilms, such as plaque on teeth or those found on internal medical devices like artificial heart valves.

Bacteria have ways of communicating with each other, and scientists have now identified a new signaling system that, when there is a critical mass of bacteria present, causes the bacteria to produce an appendage known as a flagellum that moves like a corkscrew and gives them the ability to swim away, inhibiting the formation of biofilm.

"Anything we can discover about this bacterial communication could be really important in understanding how bacteria become pathogenic in humans or how they form film on teeth or internal medical devices," said study co-author Dr. Russell Hill, Director of the Institute of Marine and Environmental Technology in Baltimore, Maryland. "Understanding that process may help in the future for controlling biofilms."

It is estimated that pound by pound there are more bacteria on Earth than all other life forms combined. They are simple organisms that consist of one cell and can only be seen through a microscope. However, bacteria have evolved ways to gather into densely populated and slimy communities called "biofilms," which attach to hard surfaces. They also know how to talk to each other, and can make group decisions about how to behave, called 'quorum sensing.'

Marine sponges in particular harbor complex and diverse bacterial communities, in some cases as much as 30-40% of the sponge's biomass. This high density of bacteria is an ideal place to study signaling, or how bacteria talk to each other using small chemical molecules. Just like in a business meeting, once enough bacteria gather in one place -- or a quorum is met -- a decision about their collective behavior can be made. This 'quorum sensing' is responsible for a number of cellular processes, including triggering molecular mechanisms that can make the surface of the ocean light up at night and the gathering of bacteria that causes plaque on teeth, otherwise known as biofilm.

The bacteria that colonize and are dependent on these marine sponges use quorum sensing to activate their locomotion when their population becomes dense, naturally limiting the amount of biofilm they form.

"This precise calibration of the bacterial interactions within the sponge may have evolved to help maintain a healthy, well-distributed symbiotic population," said study coauthor Clay Fuqua of Indiana University. "Similar mechanisms may be at play in other complex microbial communities within hosts such as those within human intestines and in symbiotic plants

This new study by scientists from the University of Maryland Center for Environmental Science's Institute of Marine and Environmental Technology, Indiana University, and University of Colorado Denver's School of Medicine, is published in the September 2012 issue of Molecular Microbiology.


Story Source:

The above story is based on materials provided by University of Maryland Center for Environmental Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jindong Zan, Elisha M. Cicirelli, Naglaa M. Mohamed, Hiruy Sibhatu, Stephanie Kroll, Ohkee Choi, Charis L. Uhlson, Christina L. Wysoczinski, Robert C. Murphy, Mair E. A. Churchill, Russell T. Hill, Clay Fuqua. A complex LuxR-LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Molecular Microbiology, 2012; 85 (5): 916 DOI: 10.1111/j.1365-2958.2012.08149.x

Cite This Page:

University of Maryland Center for Environmental Science. "Bacteria on marine sponges can develop capacity to move and inhibit biofilm formation." ScienceDaily. ScienceDaily, 6 September 2012. <www.sciencedaily.com/releases/2012/09/120906074253.htm>.
University of Maryland Center for Environmental Science. (2012, September 6). Bacteria on marine sponges can develop capacity to move and inhibit biofilm formation. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2012/09/120906074253.htm
University of Maryland Center for Environmental Science. "Bacteria on marine sponges can develop capacity to move and inhibit biofilm formation." ScienceDaily. www.sciencedaily.com/releases/2012/09/120906074253.htm (accessed September 18, 2014).

Share This



More Plants & Animals News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins