Featured Research

from universities, journals, and other organizations

Pint-size molecules show promise against obesity

Date:
September 6, 2012
Source:
Virginia Tech
Summary:
Tiny strands of RNA affect how our cells burn fat and sugar -- a finding that gives biologists a place to start in the quest for therapies to treat obesity and related health problems, say scientists.

Tiny strands of RNA affect how our cells burn fat and sugar -- a finding that gives biologists a place to start in the quest for therapies to treat obesity and related health problems, said scientists at Virginia Tech and the University of Texas Southwestern Medical Center at Dallas.

Related Articles


Mice on high fat diets are resistant to obesity when two mini-molecules called microRNAS are missing from their genetic makeup, according to a study this week in the Proceedings of the National Academy of Sciences.

The discovery suggests that treatments targeting these two specific microRNAs may help stem the nation's obesity epidemic. More than one-third of adults in the United States and about 17 percent of the nation's children are obese, increasing their risk for type 2 diabetes, heart disease, stroke, liver disease, and some cancers, according to the National Institutes of Health.

"Scientists know the best health solution for obesity involves eating less and exercising more," said Matthew W. Hulver, an associate professor with the Department of Human Nutrition, Foods, and Exercise in the College of Agriculture and Life Sciences at Virginia Tech. "But in cases when people can't or won't exercise, if we can identify what is contributing to the regulation of our metabolic circuits, we can target it with a drug or pharmacologic solution."

Once considered to be little more than scrap DNA, scientists now know microRNAs have an important role in regulating how genes shape human health and behavior. They have been linked to heart disease, diabetes, hepatitis C, leukemia, lymphoma, and breast cancer.

Although microRNAs previously have been linked to obesity, the new findings are the first to establish a connection between microRNAs and cellular metabolism.

MicroRNA biologists at UT Southwestern Medical Center modified mice to be genetically unable to produce microRNA-378 and its cousin miR-378*, resulting in relatively trim animals with metabolisms that quickly convert cellular food into energy.

"We did not know the function of this pair of microRNAs, but were intrigued because they arose from a gene connected with metabolism, and they are expressed in a variety of tissues, such as muscle, fat, and liver," said Eric N. Olson, Ph.D., a professor and the chairman of molecular biology at UT Southwestern and senior author of the study. "When we modified mice so that they were missing these microRNAs, it permitted their cells to burn more energy and have greater obesity resistance than those of their untreated litter mates. This pair of microRNAs seems to function as key regulators of metabolism, suggesting that a drug designed to inhibit them would have a positive effect against obesity."

Olson's lab has examined the results of microRNA changes on various disease states, including heart disease and amyotrophic lateral sclerosis -- also known as Lou Gehrig's disease or ALS.

In the current study, Virginia Tech scientists, including Madlyn I. Frisard, an assistant professor of Human Nutrition, Foods, and Exercise, and Hulver, director of the Metabolic Phenotyping Core at Virginia Tech, isolated mitochondria -- the furnaces within cells that turn fat and other fuel into energy -- from liver and skeletal muscle.

When they measured mitochondrial use of fatty acids, they found that a chemical process that releases energy called oxidation was increased, supporting the discovery that loss of the microRNAs results in increased energy expenditure and resistance to obesity, even with a high-fat diet.

"The take home message is microRNAs potentially are a magic bullet against obesity. This is a surprising finding that sheds light on how the body processes food and, in this case, how mice are able to withstand a fat-laden diet and stay skinny," said Dr. Gerald W. Dorn II, the Philip and Sima K. Needleman professor of Medicine at Washington University School of Medicine in St. Louis, who did not participate in the research. "In perspective, people evolved to be able to survive starvation, but as a culture, we're never much farther than a quarter a mile away from McDonald's. It would be nice to tinker with the metabolic gene program, and this research provides a single target that affects how the body deals with energy."

Hulver is an investigator with the Fralin Life Science Institute at Virginia Tech.

Miragen Therapeutics, a biotechnology company focused on the development of drugs to inhibit specific microRNAs, has licensed the technology from the University of Texas Southwestern Medical Center.

The research was supported by the NIH, the Robert A. Welch Foundation, the American Heart Association, the Jon Holden DeHaan Foundation, the Donald W. Reynolds Center for Clinical Cardiovascular Research and the Leducq Foundation.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Carrer, N. Liu, C. E. Grueter, A. H. Williams, M. I. Frisard, M. W. Hulver, R. Bassel-Duby, E. N. Olson. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1207605109

Cite This Page:

Virginia Tech. "Pint-size molecules show promise against obesity." ScienceDaily. ScienceDaily, 6 September 2012. <www.sciencedaily.com/releases/2012/09/120906112607.htm>.
Virginia Tech. (2012, September 6). Pint-size molecules show promise against obesity. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2012/09/120906112607.htm
Virginia Tech. "Pint-size molecules show promise against obesity." ScienceDaily. www.sciencedaily.com/releases/2012/09/120906112607.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins