Featured Research

from universities, journals, and other organizations

Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate

Date:
September 12, 2012
Source:
American Institute of Physics (AIP)
Summary:
Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells. They can do this by prodding the cells into place with a mechanical probe or coaxing them in the desired direction with acoustic waves, electric fields, or flowing fluids. Techniques that rely on direct physical contact can position individual cells with a high level of precision while non-contact techniques are often faster for sorting large numbers of cells. An international team of researchers has now developed a way to manipulate cells that combines some of the benefits of both contact and non-contact methods.

Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells. They can do this by prodding the cells into place with a mechanical probe or coaxing them in the desired direction with acoustic waves, electric fields, or flowing fluids. Techniques that rely on direct physical contact can position individual cells with a high level of precision while non-contact techniques are often faster for sorting large numbers of cells.

An international team of researchers has now developed a way to manipulate cells that combines some of the benefits of both contact and non-contact methods.

The researchers suspended a tiny plate in a microfluidic channel and used magnetic controls to move the plate up and down and back and forth. The movements generated fluid flow patterns that varied depending on characteristics of the oscillations such as frequency, magnitude, and phase, and the relative position of the plate and the channel wall. Changing these parameters allowed the researchers to create different streamlines that either pulled or pushed a cell toward or away from the plate, as well as vortices that rotated the cell. When the cell reached the plate the researchers could also use the plate for precise, direct-contact manipulations.

The researchers demonstrated the technique, which they describe in a paper published in the American Institute of Physics' journal Applied Physics Letters, by manipulating a single bovine egg cell. As a next step, the team plans to demonstrate control of multiple cells simultaneously.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Masaya Hagiwara, Tomohiro Kawahara, Fumihito Arai. Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations. Applied Physics Letters, 2012; 101 (7): 074102 DOI: 10.1063/1.4746247

Cite This Page:

American Institute of Physics (AIP). "Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate." ScienceDaily. ScienceDaily, 12 September 2012. <www.sciencedaily.com/releases/2012/09/120912093208.htm>.
American Institute of Physics (AIP). (2012, September 12). Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2012/09/120912093208.htm
American Institute of Physics (AIP). "Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate." ScienceDaily. www.sciencedaily.com/releases/2012/09/120912093208.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins