Featured Research

from universities, journals, and other organizations

Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate

Date:
September 12, 2012
Source:
American Institute of Physics (AIP)
Summary:
Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells. They can do this by prodding the cells into place with a mechanical probe or coaxing them in the desired direction with acoustic waves, electric fields, or flowing fluids. Techniques that rely on direct physical contact can position individual cells with a high level of precision while non-contact techniques are often faster for sorting large numbers of cells. An international team of researchers has now developed a way to manipulate cells that combines some of the benefits of both contact and non-contact methods.

Scientists who study tissue engineering and test new drugs often need to sort, rotate, move, and otherwise manipulate individual cells. They can do this by prodding the cells into place with a mechanical probe or coaxing them in the desired direction with acoustic waves, electric fields, or flowing fluids. Techniques that rely on direct physical contact can position individual cells with a high level of precision while non-contact techniques are often faster for sorting large numbers of cells.

Related Articles


An international team of researchers has now developed a way to manipulate cells that combines some of the benefits of both contact and non-contact methods.

The researchers suspended a tiny plate in a microfluidic channel and used magnetic controls to move the plate up and down and back and forth. The movements generated fluid flow patterns that varied depending on characteristics of the oscillations such as frequency, magnitude, and phase, and the relative position of the plate and the channel wall. Changing these parameters allowed the researchers to create different streamlines that either pulled or pushed a cell toward or away from the plate, as well as vortices that rotated the cell. When the cell reached the plate the researchers could also use the plate for precise, direct-contact manipulations.

The researchers demonstrated the technique, which they describe in a paper published in the American Institute of Physics' journal Applied Physics Letters, by manipulating a single bovine egg cell. As a next step, the team plans to demonstrate control of multiple cells simultaneously.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Masaya Hagiwara, Tomohiro Kawahara, Fumihito Arai. Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations. Applied Physics Letters, 2012; 101 (7): 074102 DOI: 10.1063/1.4746247

Cite This Page:

American Institute of Physics (AIP). "Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate." ScienceDaily. ScienceDaily, 12 September 2012. <www.sciencedaily.com/releases/2012/09/120912093208.htm>.
American Institute of Physics (AIP). (2012, September 12). Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2012/09/120912093208.htm
American Institute of Physics (AIP). "Cells surf through a microfluidic chip on fluid streamlines created by an oscillating plate." ScienceDaily. www.sciencedaily.com/releases/2012/09/120912093208.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
The Amazon Keeps Its Green Thanks To The Sahara Desert

The Amazon Keeps Its Green Thanks To The Sahara Desert

Newsy (Feb. 25, 2015) Satellite data shows the Amazon rainforest supports its lush flora with a little help from Sahara Desert dust. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins