Featured Research

from universities, journals, and other organizations

Damaged metal surfaces repair themselves

Date:
September 17, 2012
Source:
SINTEF
Summary:
A coating filled with tiny lubricant capsules could come to the rescue when metal surfaces dry out and friction builds up.

Capsule in the wear track.
Credit: Image courtesy of SINTEF

A coating filled with tiny lubricant capsules could come to the rescue when metal surfaces dry out and friction builds up.

Related Articles


A ball bearing -- or a slide bearing around an axle -- needs lubricating at all times. If a leak causes the lubrication in the bearings of large machines to dry out, there can be huge cost implications. Metal surfaces can grate against each other and seize up, in the worst case resulting in a total write-off. Wind turbines, for example, have high maintenance costs, of which overhaul of their mechanical components alone accounts for 30 per cent. Other cost savings for the industry involve energy consumption, personnel, lubrication expenses and maintenance and spare parts.

Lubrication in tiny capsules

As part of an internal project at the Gemini Tribology Centre (friction, wear, lubrication), a group of researchers from SINTEF and the Norwegian University of Science and Technology (NTNU) have spent two years building ground-breaking expertise in coatings and thermal spraying. The researchers are now testing whether it is possible -- where two metal surfaces are in contact with each other -- to apply a coating to the surfaces formed of hard particles and capsules filled with liquid lubricant. "We apply the lubricant using a thermal spray technique, where powder and capsules are fired at the surface using a flame," says Sergio Armada of SINTEF Materials and Chemistry. "When the metal surfaces come into contact with each other, the coating is broken down in a controlled manner, releasing the contents of the capsules, and the lubricant will then prevent further friction."

The researchers have carried out a number of tests on slide bearings in industrial settings, in which they have measured friction on surfaces with and without the capsules. When a coating without capsules was applied to the slide bearing, the friction coefficient was 0.7, while friction was reduced to 0.15 in bearings coated with a layer of capsules.

Industry on the lookout

The idea of self-repairing metals is not a new one. Two years ago, a metallic coating of capsules and the "electroplated layer" lubrication method was presented in the Economist magazine. Materials researchers from Fraunhofer and the University of Stuttgart were behind the article. The disadvantage of this method was that since the lubrication was applied using electricity, it was only possible to apply a single metallic layer.

Another challenge was that the capsules in the coating were too big. Since a surface layer should preferably be only 15-20 micrometres thick, the capsules must be a fraction of this size if they are not to be released too quickly.

"In our case, the capsules must be smaller than 10 micrometres, so that they do not block the nozzles and cause problems during the spraying process. We have now created capsules as small as 2 micrometres," says SINTEF researcher Christian Simon.

His colleague Ruth Schmid is producing capsules with an extremely low friction coefficient that could prove to provide the coating with even better tribological properties.

Many applications

"Our method has many potential applications, and is suitable for a wide range of coatings," says researcher Sergio Armada. "It will be possible to apply the coating to large surfaces and components, and the actual material of the coating can also be varied -- from metals to polymers and ceramics."

Armada thinks that the coating could also be used in the medical sector in hip and knee replacements. These are also places where surfaces move against each other, and grating can occur if there is not enough fluid in the joint. Patients would therefore benefit from lubricants applied in a coating of capsules which is sprayed onto the implant before it is inserted. Nuria Espallargas and Ragnhild Aune of NTNU are working on new materials that have capsules filled with medication or antibiotics that can be released when they are needed. The project has now come to an end, but the parties have written a project proposal and applied to the EU to be able to continue their work on thermal spraying and biocompatible coatings.


Story Source:

The above story is based on materials provided by SINTEF. Note: Materials may be edited for content and length.


Cite This Page:

SINTEF. "Damaged metal surfaces repair themselves." ScienceDaily. ScienceDaily, 17 September 2012. <www.sciencedaily.com/releases/2012/09/120917090020.htm>.
SINTEF. (2012, September 17). Damaged metal surfaces repair themselves. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/09/120917090020.htm
SINTEF. "Damaged metal surfaces repair themselves." ScienceDaily. www.sciencedaily.com/releases/2012/09/120917090020.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) — Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360° Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360° Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) — Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) — Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins