Featured Research

from universities, journals, and other organizations

Taming physical forces that block cancer treatment

Date:
September 20, 2012
Source:
Massachusetts General Hospital
Summary:
A research team has identified factors that contribute to solid stress within tumors, suggesting possible ways to alleviate it, and has developed a simple way to measure such pressures.

It's a high-pressure environment within solid tumors. Abnormal blood and lymphatic vessels cause fluids to accumulate, and the uncontrolled proliferation of cancer cells within limited space leads to the buildup of what is called solid stress. Both types of pressure can interfere with the effectiveness of anticancer treatments, but while strategies have been developed that reduce fluid pressures, little has been known about the impact of solid stress or potential ways to alleviate it. Now a Massachusetts General Hospital (MGH) research team has identified factors that contribute to solid stress within tumors, suggesting possible ways to alleviate it, and has developed a simple way to measure such pressures.

Related Articles


"Traditionally cancer research has focused on cancer cells and, more recently, on the biochemical microenvironment of tumors," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH and senior author of the study in the Sept. 18 issue of Proceedings of the National Academy of Sciences. "Our work shows that the physical or mechanical microenvironment plays an equally important role in tumor progression and treatment resistance."

Jain and his colleagues have been leaders in understanding the impact of elevated fluid pressures that make it difficult for drugs to enter and permeate tumors. Their work showed that fluid pressures are relieved when antiangiogenesis drugs normalize the abnormal blood vessels characteristically found within solid tumors, improving the effectiveness of other anticancer therapies. But that approach can only work if vessels have not been squeezed shut by solid stress in surrounding tissues. In recent studies Jain's team showed that solid stress also increases the invasiveness of cancer cells.

The current study was designed to develop techniques that measure solid stress in tumors, to identify factors that contribute to the generation of this solid stress and to determine whether previously compressed blood vessels would open when stress-inducing components were depleted. Based on predictions from mathematical models, the MGH-based team developed a remarkably simple way to measure solid stress within tumor tissues.

In experiments using both tumors experimentally grown in mice and tumors removed from human patients, the researchers found that, when a solid tumor is cut in two, each segment begins to swell along the sliced surface, releasing stored solid stress. In contrast, when a sample of normal tissue is cut in two, the separated halves of tissue retain their size and shape. Measuring the extent of shape relaxation along with other mechanical properties of tumor tissue enabled calculation of the amount of solid stress within a tumor sample.

Additional experiments utilizing the newly developed technique identified several components that contribute to increased solid stress within tumors, including the proliferation not only of cancer cells but also of fibroblasts and other components of the tumor's extracellular matrix. In pancreatic tumors implanted into mice, the researchers showed that inhibition of a pathway leading to the growth of fibroblasts reduced solid stress associated with tumor growth and opened up compressed blood and lymphatic vessels, which could both relieve fluid pressure and improve the delivery of chemotherapy drugs.

The authors note that their results may explain why the use of antiangiogenesis drugs has not improved treatment of highly fibrotic tumors -- including dangerous pancreatic, lung and breast cancers -- and suggest that a strategy targeting both aspects of intratumor pressure should be explored. "Now that we have seen how tumors exploit physical forces to facilitate progression and treatment resistance, we need to learn how to tame these fluid and solid forces to improve treatment outcomes," says Jain, the Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School. "We urgently need to identify safe pharmaceutical agents that reduce solid stress and then add them judiciously to current treatments."

Co-lead authors of the PNAS paper are Triantafyllos Stylianopoulos, PhD, and John D. Martin of the Steele Laboratory. Additional co-authors are Vikash Chauhan, Saloni Jain, Benjamin Diop-Frimpong, Yves Boucher, PhD, and Lance Munn, PhD, Steele Lab; Nabeel Bardeesy, PhD, MGH Center for Cancer Research; Barbara Smith, MD, MD, and Cristina Ferrone, MD, MGH Department of Surgery; and Francis J. Horniceki, MD, PhD, MGH Orthopaedic Oncology. The study was supported by grants from the National Institutes of Health and the Department of Defense.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jieqiong Liu, Shan Liao, Benjamin Diop-Frimpong, Wei Chen, Shom Goel, Kamila Naxerova, Marek Ancukiewicz, Yves Boucher, Rakesh K. Jain, and Lei Xu. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1117610109

Cite This Page:

Massachusetts General Hospital. "Taming physical forces that block cancer treatment." ScienceDaily. ScienceDaily, 20 September 2012. <www.sciencedaily.com/releases/2012/09/120920153313.htm>.
Massachusetts General Hospital. (2012, September 20). Taming physical forces that block cancer treatment. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2012/09/120920153313.htm
Massachusetts General Hospital. "Taming physical forces that block cancer treatment." ScienceDaily. www.sciencedaily.com/releases/2012/09/120920153313.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins