Featured Research

from universities, journals, and other organizations

Study uncovers mechanism by which tumor suppressor MIG6 triggers cell suicide

Date:
September 24, 2012
Source:
Ludwig Institute for Cancer Research
Summary:
Researchers have determined the outsize role a small protein named Mig6 plays in the tightly orchestrated suicide of cells -- a phenomenon essential to everything from shaping an embryo to keeping it free of cancer later in life. Their findings unveil a conceptually novel mechanism for this biological regulation.

Death plays a big role in keeping things alive. Consider the tightly orchestrated suicide of cells -- a phenomenon essential to everything from shaping an embryo to keeping it free of cancer later in life. When cells refuse to die, and instead multiply uncontrollably, they become what we call tumors. An intricate circuitry of biochemical reactions inside cells coordinates their self-sacrifice. Tracing that circuitry is, naturally, an important part of cancer research.

In a major contribution to that effort Dr. Ingvar Ferby, a Ludwig researcher based at Uppsala University in Sweden, led a team of researchers who have determined the outsize role a small protein named Mig6 plays in such processes. Their findings, reported online in the September 11 issue of Developmental Cell, unveil a conceptually novel mechanism for the biological regulation of cell suicide.

The studies focus on epithelial tissue in the mammary glands of mice. Though diverse in function, such epithelial linings -- found on the surfaces of virtually every organ and gland in the body -- generally consist of a stack of functionally distinct cells layered over a membrane that acts like a floor. The outermost cells of epithelia constantly die, slough off and are replaced. This tightly regulated process is known as epithelial homeostasis; where it breaks down, tumors often ensue.

To figure out what exactly Mig6 does, Ferby and his colleagues studied what happens in the mammary glands of mice engineered to lack the gene for that protein. His laboratory had previously shown that such mice tend to spontaneously develop tumors -- suggesting that Mig6 somehow suppresses cancer. In the current study, he and his team noticed that tiny ducts in the mammary glands of these mice were clogged with aberrantly proliferating epithelial cells.

The question was why. To find out, Ferby's team took epithelial cells from mutant mice and their normal littermates and used them to conduct an elegant series of experiments. They discovered that Mig6 is the chief instigator of suicide in these cells.

Mig6 was already known to dampen the signal of a secreted protein named epidermal growth factor (EGF) by binding to its receptor, and EGF plays an important role in maintaining epithelial homeostasis. But Ferby and his colleagues discovered that Mig6 really kicks into gear only after EGF is taken away. It drops off the EGF receptor and promptly latches on to an intracellular protein named cAbl. This activates cAbl, initiating a signaling cascade that reaches into the nucleus and turns on a key enzyme involved in cell suicide.

They next asked what keeps Mig6 from triggering cell death in the presence of EGF? The answer, it seems, is yet another protein, Src, which is known to be activated by the EGF receptor. Ferby and his colleagues found that Src chemically modifies cAbl in a manner that prohibits its activation by Mig6. Conversely, when EGF is removed and its receptor becomes dormant, Src gets shut down -- allowing Mig6 and cAbl to work together to induce cell suicide.

"In other words," explains Sarah Hopkins, a post-doctoral researcher at UCL (University College London) and the lead author of the study, "Mig6 is an intracellular sensor that detects the absence of a proliferative signal, such as EGF, and, in response, induces normal cell death."

Mig6 keeps the growth of epithelial cells dependent on EGF. This is notable because escape from such dependence is an early step in the generation of some tumors. Mig6 is known to be silenced in many human epithelial cancers, including those of the lung, pancreas, breast and skin.

"The findings from this study may have an impact on how we evaluate drugs that inhibit cAbl," says Ferby. "These therapies are designed to target a mutated version of cAbl that promotes cancer. But by disabling healthy cAbl, they may well interfere with a protein essential to Mig6's work inside the cell."

And that work, as these findings suggest, is clearly very important.


Story Source:

The above story is based on materials provided by Ludwig Institute for Cancer Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sarah Hopkins, Emma Linderoth, Oliver Hantschel, Paula Surarez-Henriques, Giulia Pilia, Howard Kendrick, Matthew J. Smalley, Giulio Superti-Furga, Ingvar Ferby. Mig6 is a sensor of EGR receptor inactivation that directly activates c-Abl to induce apoptosis during epithelial homeostasis. Developmental Cell, 11 September 2012

Cite This Page:

Ludwig Institute for Cancer Research. "Study uncovers mechanism by which tumor suppressor MIG6 triggers cell suicide." ScienceDaily. ScienceDaily, 24 September 2012. <www.sciencedaily.com/releases/2012/09/120924102456.htm>.
Ludwig Institute for Cancer Research. (2012, September 24). Study uncovers mechanism by which tumor suppressor MIG6 triggers cell suicide. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/09/120924102456.htm
Ludwig Institute for Cancer Research. "Study uncovers mechanism by which tumor suppressor MIG6 triggers cell suicide." ScienceDaily. www.sciencedaily.com/releases/2012/09/120924102456.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins