Featured Research

from universities, journals, and other organizations

First use in patient of conditionally reprogrammed cells delivers clinical response

Date:
September 27, 2012
Source:
Georgetown University Medical Center
Summary:
Using a newly discovered cell technology, researchers were able to identify an effective therapy for a patient with a rare type of lung tumor. The single case study provides a snapshot of the new technology's promising potential; however, researchers strongly caution that it could be years before validation studies are completed and regulatory approval received for its broader use.

Using a newly discovered cell technology, Georgetown University Medical Center researchers were able to identify an effective therapy for a patient with a rare type of lung tumor. The single case study, reported in the Sept. 27 issue of New England Journal of Medicine, provides a snapshot of the new technology's promising potential; however, researchers strongly caution that it could be years before validation studies are completed and regulatory approval received for its broader use.

Related Articles


The patient in the case study was a 24-year-old man with a 20 year history of HPV-positive recurrent respiratory papillomatosis (RRP). RRP is the most common benign neoplasm of the larynx usually due to infection by HPV that is acquired at birth during passage through an HPV-infected birth canal. The standard treatment is surgical removal of the tumors to clear the airway. The patient has had 350 such surgeries and has received chemotherapy for much of his life. In rare instances (three to five percent of cases), RRP can extend below the vocal cords. This patient's clinical course is even more uncommon because it spread into his lungs, a stage which occurs in less than one percent of people infected. There are no effective treatments for this disease stage, which is almost invariably fatal.

"Early on, we recognized this highly unusual case as one that would allow us to try the new technique with the added bonus of potentially helping the patient," explains the study's senior investigator, Richard Schlegel, M.D., Ph.D., chairman of the Department of Pathology at Georgetown Lombardi Comprehensive Cancer Center, a part of Georgetown University Medical Center.

The technology used is one that keeps normal and tumor cells alive indefinitely in the laboratory -- which previously had not been possible. In this case, the technique allowed researchers to establish live cultures of the patient's normal and tumor cells (with the patient's consent) so that treatments could be screened for in vitro activity. Within two weeks, the man's cells had rapidly generated to create stable cell cultures allowing Schlegel and his team to screen available drugs approved by the U.S. Food and Drug (FDA) for other uses.

"The patient's disease was rapidly progressing and he had no other treatment options," explains Schlegel. "Before he was asked to participate in this experiment, the patient was planning to enroll in a clinical trial with cidofovir, a drug frequently used to treat RRP, though without proven efficacy when the lungs are involved. The drugs chosen to be screened had shown some activity against certain HPV types."

One of the drugs tested on the patient's living cells was cidofovir, the drug the patient was to receive in the clinical trial. The cidofovir was ineffective in vitro. Another drug, which had been shown previously to be effective and selective against HPV cervical cancers, exhibited only moderate activity at high doses and did not discriminate between normal and tumor cells. A fourth drug, vorinostat (FDA-approved to treat cutaneous T-cell lymphoma), showed activity in vitro with selectivity for tumor cells versus normal cells.

"We talked to the patient and his doctors about what we observed and based on that, the patient was offered vironostat off-label," Schlegel says, explaining that the drug could be given "off-label" because it was FDA-approved for another indication. "We saw encouraging results after just three months with some tumor shrinkage and no new tumors. The patient received the drug for one year resulting in stabilization of the tumors."

The technique used to propagate the normal and tumor cells was described recently in American Journal of Pathology (Feb. 2012). It relies on the use of Rho kinase (ROCK) inhibitor and fibroblast feeder cells. "In short, we discovered we can grow normal and tumor cells from the same patient forever, and nobody has been able to do that," Schlegel says. "Normal cell cultures for most organ systems can't be established in the lab, so it wasn't possible previously to compare normal and tumor cells directly."

The mechanisms by which these factors induce cell reprogramming and unlimited cell growth are currently under investigation, but efforts to validate this technique with other chemotherapy regimens are underway. Schlegel says teams of researchers from around the U.S. have visited his Georgetown lab to learn the "Georgetown Method," a phrase coined by researchers who provided an accompanying commentary at the time the work was published.

Schlegel says, "Our first clinical application utilizing this technique represents a powerful example of individualized medicine," but, he cautions, "It will take an army of researchers and solid science to figure out if this technique will be the advance we need to usher in a new era of personalized medicine."

In addition to Schlegel, other study authors include Hang Yuan, Ph.D., Scott Myers, M.D., Jingang Wang, Ph.D., Dan Zhou, M.D., Jennifer A. Woo, M.S., Bhaskar Kallakury, M.D., Andrew Ju, M.D., Michael Bazylewicz, M.D., Yvonne M. Carter, M.D., Christopher Albanese, Ph.D., Nazaneen Grant, M.D., Aziza Shad, M.D., Anatoly Dritschilo, M.D., and Xuefeng Liu, M.D., all of Georgetown University Medical Center.

Georgetown University has filed a patent application on the technology described in this paper. The inventors for the patent application include Schlegel and Xuefeng Liu. The research described in the NEJM was funded by a grant to Schlegel from the National Institutes of Health (R01 OD011168).


Story Source:

The above story is based on materials provided by Georgetown University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hang Yuan, Scott Myers, Jingang Wang, Dan Zhou, Jennifer A. Woo, Bhaskar Kallakury, Andrew Ju, Michael Bazylewicz, Yvonne M. Carter, Christopher Albanese, Nazaneen Grant, Aziza Shad, Anatoly Dritschilo, Xuefeng Liu, Richard Schlegel. Use of Reprogrammed Cells to Identify Therapy for Respiratory Papillomatosis. New England Journal of Medicine, 2012; 367 (13): 1220 DOI: 10.1056/NEJMoa1203055

Cite This Page:

Georgetown University Medical Center. "First use in patient of conditionally reprogrammed cells delivers clinical response." ScienceDaily. ScienceDaily, 27 September 2012. <www.sciencedaily.com/releases/2012/09/120927092124.htm>.
Georgetown University Medical Center. (2012, September 27). First use in patient of conditionally reprogrammed cells delivers clinical response. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/09/120927092124.htm
Georgetown University Medical Center. "First use in patient of conditionally reprogrammed cells delivers clinical response." ScienceDaily. www.sciencedaily.com/releases/2012/09/120927092124.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins