Featured Research

from universities, journals, and other organizations

Tiny resorbable semiconductors: Smooth as silk 'transient electronics' dissolve in body or environment

Date:
September 27, 2012
Source:
Tufts University
Summary:
Tiny, fully biocompatible electronic devices that are able to dissolve harmlessly into their surroundings after functioning for a precise amount of time have been created by researchers. Dubbed "transient electronics," the new class of silk-silicon devices promises a generation of medical implants that never need surgical removal, as well as environmental monitors and consumer electronics that can become compost rather than trash.

New biocompatible electronic devices, encapsulated in silk, can dissolve harmlessly into their surroundings after a precise amount of time. These "transient electronics" promise medical implants that never need surgical removal, as well as environmental monitors and consumer electronics that can become compost rather than trash. Here, a biodegradable integrated circuit -- including transistors, diodes, inductors and capacitors-- is partially dissolved by a droplet of water. The image is courtesy of Tufts University and the University of Illinois.
Credit: Fiorenzo Omenetto/Tufts University

Tiny, fully biocompatible electronic devices that are able to dissolve harmlessly into their surroundings after functioning for a precise amount of time have been created by a research team led by biomedical engineers at Tufts University in collaboration with researchers at the University of Illinois at Urbana-Champaign.

Related Articles


Dubbed "transient electronics," the new class of silk-silicon devices promises a generation of medical implants that never need surgical removal, as well as environmental monitors and consumer electronics that can become compost rather than trash.

"These devices are the polar opposite of conventional electronics whose integrated circuits are designed for long-term physical and electronic stability," says Fiorenzo Omenetto, professor of biomedical engineering at Tufts School of Engineering and a senior and corresponding author on the paper "A Physically Transient Form of Silicon Electronics" published in the Sept. 28, 2012, issue of Science.

"Transient electronics offer robust performance comparable to current devices but they will fully resorb into their environment at a prescribed time -- ranging from minutes to years, depending on the application," Omenetto explains. "Imagine the environmental benefits if cell phones, for example, could just dissolve instead of languishing in landfills for years."

The futuristic devices incorporate the stuff of conventional integrated circuits -- silicon and magnesium -- but in an ultrathin form that is then encapsulated in silk protein.

"While silicon may appear to be impermeable, eventually it dissolves in water," says Omenetto. The challenge, he notes, is to make the electrical components dissolve in minutes rather than eons.

Researchers led by UIUC's John Rogers -- the other senior and corresponding author -- are pioneers in the engineering of ultrathin flexible electronic components. Only a few tens of nanometers thick, these tiny circuits, from transistors to interconnects, readily dissolve in a small amount of water, or body fluid, and are harmlessly resorbed. Controlling materials at these scales makes it possible to fine-tune how long it takes the devices to dissolve.

Device dissolution is further controlled by sheets of silk protein in which the electronics are supported and encapsulated. Extracted from silkworm cocoons, silk protein is one of the strongest, most robust materials known. It's also fully biodegradable and biofriendly and is already used for some medical applications. Omenetto and his Tufts colleagues have discovered how to adjust the properties of silk so that it degrades at a wide range of intervals.

The researchers successfully demonstrated the new platform by testing a thermal device designed to monitor and prevent post-surgical infection (demonstrated in a rat model) and also created a 64 pixel digital camera.

Collaborating with Omenetto from Tufts' Department of Biomedical Engineering were Hu Tao, research assistant professor and co-first author on the paper; Mark A. Brenckle, doctoral student; Bruce Panilaitis, program administrator; Miaomiao Yang, doctoral student; and David L. Kaplan, Stern Family Professor of Engineering and department chair. In addition to Tufts and UIUC, co-authors on the paper also came from Seoul National University, Northwestern University, Dalian University of Technology (China), Nano Terra (Boston), and the University of Arizona.

In the future, the researchers envision more complex devices that could be adjustable in real time or responsive to changes in their environment, such as chemistry, light or pressure.

The work was supported by the Defense Advanced Research Projects Agency, the National Science Foundation, the Air Force Office of Scientific Research Multi University Research Initiative program, the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award EB002520 and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Tufts University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Suk-Won Hwang, Hu Tao, Dae-Hyeong Kim, Huanyu Cheng, Jun-Kyul Song, Elliott Rill, Mark A. Brenckle, Bruce Panilaitis, Sang Min Won, Yun-Soung Kim, Young Min Song, Ki Jun Yu, Abid Ameen, Rui Li, Yewang Su, Miaomiao Yang, David L. Kaplan, Mitchell R. Zakin, Marvin J. Slepian, Yonggang Huang, Fiorenzo G. Omenetto, and John A. Rogers. A Physically Transient Form of Silicon Electronics. Science, 2012; 337 (6102): 1640-1644 DOI: 10.1126/science.1226325

Cite This Page:

Tufts University. "Tiny resorbable semiconductors: Smooth as silk 'transient electronics' dissolve in body or environment." ScienceDaily. ScienceDaily, 27 September 2012. <www.sciencedaily.com/releases/2012/09/120927141535.htm>.
Tufts University. (2012, September 27). Tiny resorbable semiconductors: Smooth as silk 'transient electronics' dissolve in body or environment. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2012/09/120927141535.htm
Tufts University. "Tiny resorbable semiconductors: Smooth as silk 'transient electronics' dissolve in body or environment." ScienceDaily. www.sciencedaily.com/releases/2012/09/120927141535.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Electronics That Vanish in the Environment or the Body

Sep. 27, 2012 Physicians and environmentalists alike could soon be using a new class of electronic devices: small, robust and high performance, yet also biocompatible and capable of dissolving completely in water ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins