Featured Research

from universities, journals, and other organizations

Nanosciences: All systems go at the biofactory

Date:
September 28, 2012
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
In order to assemble novel biomolecular machines, individual protein molecules must be installed at their site of operation with nanometer precision. Researchers have now found a way to do just that.

In order to assemble novel biomolecular machines, individual protein molecules must be installed at their site of operation with nanometer precision. LMU researchers have now found a way to do just that. Green light on protein assembly!
Credit: Image courtesy of LMU

In order to assemble novel biomolecular machines, individual protein molecules must be installed at their site of operation with nanometer precision. LMU researchers have now found a way to do just that. Green light on protein assembly!

Related Articles


The finely honed tip of the atomic force microscope (AFM) allows one to pick up single biomolecules and deposit them elsewhere with nanometer accuracy. The technique is referred to as Single-Molecule Cut & Paste (SMC&P), and was developed by the research group led by LMU physicist Professor Hermann Gaub. In its initial form, it was only applicable to DNA molecules. However, the molecular machines responsible for many of the biochemical processes in cells consist of proteins, and the controlled assembly of such devices is one of the major goals of nanotechnology. A practical method for doing so would not only provide novel insights into the workings of living cells, but would also furnish a way to develop, construct and utilize designer nanomachines.

In a major step towards this goal, the LMU team has modified the method to allow them to take proteins from a storage site and place them at defined locations within a construction area with nanometer precision. "In liquid medium at room temperature, the "weather conditions" at the nanoscale are comparable to those in a hurricane," says Mathias Strackharn, first author of the new study. Hence, the molecules being manipulated must be firmly attached to the tip of the AFM and held securely in place in the construction area.

Traffic signals prove the efficiency

The forces that tether the proteins during transport and assembly must also be weak enough not to cause damage, and must be tightly controlled. To achieve these two goals, the researchers used a combination of antibodies, DNA-binding "zinc-finger" proteins, and DNA anchors. "We demonstrated the method's feasibility by bringing hundreds of fluorescent GFP molecules together to form a little green man, like the traffic-light figure that signals to pedestrians to cross the road, but only some micrometers high," Strackharn explains.

With this technique, functional aspects of complex protein machines -- such as how combinations of different enzymes interact, and how close together they must be to perform coupled reactions -- can be tested directly. A further goal is to develop artificial multimolecular assemblies modeled on natural "cellulosomes," which could be used to convert plant biomass into biofuels. Strackharn points out the implications: "If we can efficiently build mimics of these 'enzymatic assembly lines' by bringing individual proteins together, we could perhaps make a significant contribution to the exploitation of sustainable energy sources." (JACS September 2012) (göd)


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal Reference:

  1. Mathias Strackharn, Diana A. Pippig, Philipp Meyer, Stefan W. Stahl, Hermann E. Gaub. Nanoscale Arrangement of Proteins by Single-Molecule Cut-and-Paste. Journal of the American Chemical Society, 2012; 134 (37): 15193 DOI: 10.1021/ja305689r

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "Nanosciences: All systems go at the biofactory." ScienceDaily. ScienceDaily, 28 September 2012. <www.sciencedaily.com/releases/2012/09/120928085224.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2012, September 28). Nanosciences: All systems go at the biofactory. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/09/120928085224.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "Nanosciences: All systems go at the biofactory." ScienceDaily. www.sciencedaily.com/releases/2012/09/120928085224.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) — Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins