Featured Research

from universities, journals, and other organizations

'Green Brain' project to create an autonomous flying robot with a honey bee brain

Date:
October 1, 2012
Source:
University of Sheffield
Summary:
Scientists in the UK are embarking on an ambitious project to produce the first accurate computer models of a honey bee brain in a bid to advance our understanding of artificial intelligence, and how animals think.

Scientists at the Universities of Sheffield and Sussex are embarking on an ambitious project to produce the first accurate computer models of a honey bee brain in a bid to advance our understanding of Artificial Intelligence (AI), and how animals think.

The team will build models of the systems in the brain that govern a honey bee's vision and sense of smell. Using this information, the researchers aim to create the first flying robot able to sense and act as autonomously as a bee, rather than just carry out a pre-programmed set of instructions.

If successful, this project will meet one of the major challenges of modern science: building a robot brain that can perform complex tasks as well as the brain of an animal. Tasks the robot will be expected to perform, for example, will include finding the source of particular odours or gases in the same way that a bee can identify particular flowers.

It is anticipated that the artificial brain could eventually be used in applications such as search and rescue missions, or even mechanical pollination of crops.

Dr James Marshall, leading the £1 million EPSRC1 funded project in Sheffield, said: "The development of an artificial brain is one of the greatest challenges in Artificial Intelligence. So far, researchers have typically studied brains such as those of rats, monkeys, and humans, but actually 'simpler' organisms such as social insects have surprisingly advanced cognitive abilities."

Called "Green Brain," and partially supported with hardware donated by NVIDIA Corporation, the project invites comparison with the IBM-sponsored Blue Brain initiative, which is developing brain modeling technologies using supercomputers with the ultimate goal of producing an accurate model of a human brain.

The hardware provided by NVIDIA is based on high-performance processors called "GPU accelerators" that generate the 3D graphics on home PCs and games consoles and power some of the world's highest-performance supercomputers. These accelerators provide a very efficient way of performing the massive calculations needed to simulate a brain using a standard desktop PC -- rather than on a large, expensive supercomputing cluster.

"Using NVIDIA's massively parallel GPU accelerators for brain models is an important goal of the project as they allow us to build faster models than ever before," explained Dr Thomas Nowotny, the leader of the Sussex team. "We expect that in many areas of science this technology will eventually replace the classic supercomputers we use today."

Green Brain's researchers anticipate that developing a model of a honey bee brain will offer a more accessible method of driving forward our knowledge of how a brain's cognitive systems work, leading to advances in understanding animal and human cognition. "Because the honey bee brain is smaller and more accessible than any vertebrate brain, we hope to eventually be able to produce an accurate and complete model that we can test within a flying robot," said Dr Marshall.

"Not only will this pave the way for many future advances in autonomous flying robots, but we also believe the computer modelling techniques we will be using will be widely useful to other brain modelling and computational neuroscience projects," added Dr Nowotny.

Alongside this, the research is expected to provide a greater understanding of the honey bee itself. Because of their role as pollinators, honey bees are vital to many ecosystems, yet their declining population in recent years has given scientists cause for concern. Green Brain's modelling could help scientists to understand why honey bee numbers are dwindling and also contribute to the development of artificial pollinators, such as those being researched by the National Science Foundation-funded Robobees project, led by Harvard University.


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Cite This Page:

University of Sheffield. "'Green Brain' project to create an autonomous flying robot with a honey bee brain." ScienceDaily. ScienceDaily, 1 October 2012. <www.sciencedaily.com/releases/2012/10/121001111405.htm>.
University of Sheffield. (2012, October 1). 'Green Brain' project to create an autonomous flying robot with a honey bee brain. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/10/121001111405.htm
University of Sheffield. "'Green Brain' project to create an autonomous flying robot with a honey bee brain." ScienceDaily. www.sciencedaily.com/releases/2012/10/121001111405.htm (accessed August 21, 2014).

Share This




More Mind & Brain News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) — A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins