Featured Research

from universities, journals, and other organizations

Solar cell consisting of a single molecule: Individual protein complex generates electric current

Date:
October 2, 2012
Source:
Technische Universitaet Muenchen
Summary:
Photosynthesis allows plants to convert light into chemical energy. Utilizing this process to produce electrical energy is a research goal worldwide. Scientists have now demonstrated that a photosynthetic protein system can be integrated into artificial photovoltaic device architectures while retaining biomolecular functional properties. The proteins represent light-driven, highly efficient single-molecule electron pumps that can act as current generators in nanoscale electric circuits.

Photosystem-I (green) is optically excited by an electrode (on top). An electron then is transferred step by step in only 16 nanoseconds.
Credit: Christoph Hohmann (NIM)

An team of scientists, led by Joachim Reichert, Johannes Barth, and Alexander Holleitner (Technische Universitaet Muenchen, Clusters of Excellence MAP and NIM), and Itai Carmeli (Tel Aviv University) developed a method to measure photocurrents of a single functionalized photosynthetic protein system. The scientists could demonstrate that such a system can be integrated and selectively addressed in artificial photovoltaic device architectures while retaining their biomolecular functional properties.

Related Articles


The proteins represent light-driven, highly efficient single-molecule electron pumps that can act as current generators in nanoscale electric circuits.

The interdisciplinary team publishes the results in Nature Nanotechnology this week.

The scientist investigated the photosystem-I reaction center which is a chlorophyll protein complex located in membranes of chloroplasts from cyanobacteria. Plants, algae and bacteria use photosynthesis to convert solar energy into chemical energy. The initial stages of this process -- where light is absorbed and energy and electrons are transferred -- are mediated by photosynthetic proteins composed of chlorophyll and carotenoid complexes. Until now, none of the available methods were sensitive enough to measure photocurrents generated by a single protein. Photosystem-I exhibits outstanding optoelectronic properties found only in photosynthetic systems. The nanoscale dimension further makes the photosystem-I a promising unit for applications in molecular optoelectronics.

The first challenge the physicists had to master was the development of a method to electrically contact single molecules in strong optical fields. The central element of the realized nanodevice are photosynthetic proteins self-assembled and covalently bound to a gold electrode via cysteine mutation groups. The photocurrent was measured by means of a gold-covered glass tip employed in a scanning near-field optical microscopy set-up. The photosynthetic proteins are optically excited by a photon flux guided through the tetrahedral tip that at the same time provides the electrical contact. With this technique, the physicists were able to monitor the photocurrent generated in single protein units.

The research was supported by the German Research Foundation (DFG) via the SPP 1243 (grants HO 3324/2 and RE 2592/2), the Clusters of Excellence Munich-Centre for Advanced Photonics and Nanosystems Initiative Munich, as well as ERC Advanced Grant MolArt (no. 47299).


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Gerster, Joachim Reichert, Hai Bi, Johannes V. Barth, Simone M. Kaniber, Alexander W. Holleitner, Iris Visoly-Fisher, Shlomi Sergani, Itai Carmeli. Photocurrent of a single photosynthetic protein. Nature Nanotechnology, 2012; DOI: 10.1038/nnano.2012.165

Cite This Page:

Technische Universitaet Muenchen. "Solar cell consisting of a single molecule: Individual protein complex generates electric current." ScienceDaily. ScienceDaily, 2 October 2012. <www.sciencedaily.com/releases/2012/10/121002150029.htm>.
Technische Universitaet Muenchen. (2012, October 2). Solar cell consisting of a single molecule: Individual protein complex generates electric current. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2012/10/121002150029.htm
Technische Universitaet Muenchen. "Solar cell consisting of a single molecule: Individual protein complex generates electric current." ScienceDaily. www.sciencedaily.com/releases/2012/10/121002150029.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins