Featured Research

from universities, journals, and other organizations

Developmental biologist proposes new theory of early animal evolution that challenges basic assumption of evolution

Date:
October 11, 2012
Source:
New York Medical College
Summary:
A developmental biologist whose life's work has supported the theory of evolution has developed a concept that dramatically alters one of its basic assumptions -- that survival is based on a change's functional advantage if it is to persist.

Developing bodies go on to fold, elongate, and extend appendages, and in some species, generate endoskeletons with repeating elements (e.g., the human hand).
Credit: koszivu / Fotolia

A New York Medical College developmental biologist whose life's work has supported the theory of evolution has developed a concept that dramatically alters one of its basic assumptions -- that survival is based on a change's functional advantage if it is to persist. Stuart A. Newman, Ph.D., professor of cell biology and anatomy, offers an alternative model in proposing that the origination of the structural motifs of animal form were actually predictable and relatively sudden, with abrupt morphological transformations favored during the early period of animal evolution.

Newman's long view of evolution is fully explained in his perspective article, "Physico-Genetic Determinants in the Evolution of Development," which is to be published in the October 12 issue of the journal Science, in a special section called Forces in Development.

Evolution is commonly thought to take place opportunistically, by small steps, with each change persisting, or not, based on its functional advantage. Newman's alternative model is based on recent inferences about the genetics of the single-celled ancestors of the animals and, more surprisingly, the physics of "middle-scale" materials.

Animal bodies and the embryos that generate them exhibit an assortment of recurrent "morphological motifs" which, on the evidence of the fossil record, first appeared more than a half billion years ago. During embryonic development of present-day animals, cells arrange themselves into tissues having non-mixing layers and interior cavities. Embryos contain patterned arrangements of cell types with which they may form segments, exoskeletons and blood vessels. Developing bodies go on to fold, elongate, and extend appendages, and in some species, generate endoskeletons with repeating elements (e.g., the human hand).

These developmental motifs are strikingly similar to the forms assumed by nonliving condensed, chemically active, viscoelastic materials when they are organized by relevant physical forces and effects, although the mechanisms that generate the motifs in living embryos are typically much more complex. Newman proposes that the ancestors of the present-day animals acquired these forms when ancient single-celled organisms came to reside in multicellular clusters and physical processes relevant to matter at this new (for cellular life) spatial scale were immediately mobilized.

The unicellular progenitors are believed to have contained genes of the "developmental-genetic toolkit" with which all present-day animals orchestrate embryonic development, though they used the genes for single-cell functions. It was precisely these genes whose products enabled the ancestral clusters to harness the middle-scale physical effects that produced the characteristic motifs. And since not every ancestral cluster contained the same selection of toolkit genes, different body forms arose in parallel, giving rise to the modern morphologically distinct animal phyla.

Natural selection, acting over the hundreds of millions of years since the occurrence of these origination events led, according to Newman's hypothesis, to more complex developmental processes which have made embryogenesis much less dependent on potentially inconsistent physical determinants, although the "physical" motifs were retained. As Newman describes in his article, this new perspective provides natural interpretations for puzzling aspects of the early evolution of the animals, including the "explosive" rise of complex body forms between 540 and 640 million years ago and the failure to add new motifs since that time. The model also helps us to understand the conserved use of the same set of genes to orchestrate development in all of the morphologically diverse phyla, and the "embryonic hourglass" of comparative developmental biology: the observation that the species of a phylum can have drastically different trajectories of early embryogenesis (e.g., frogs and mice), but still wind up with very similar "body plans."


Story Source:

The above story is based on materials provided by New York Medical College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stuart A. Newman. Physico-Genetic Determinants in the Evolution of Development. Science, 12 October 2012: 217-219 DOI: 10.1126/science.1222003

Cite This Page:

New York Medical College. "Developmental biologist proposes new theory of early animal evolution that challenges basic assumption of evolution." ScienceDaily. ScienceDaily, 11 October 2012. <www.sciencedaily.com/releases/2012/10/121011141443.htm>.
New York Medical College. (2012, October 11). Developmental biologist proposes new theory of early animal evolution that challenges basic assumption of evolution. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/10/121011141443.htm
New York Medical College. "Developmental biologist proposes new theory of early animal evolution that challenges basic assumption of evolution." ScienceDaily. www.sciencedaily.com/releases/2012/10/121011141443.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins