Featured Research

from universities, journals, and other organizations

Evolving microbes help engineers turn bio-oil into advanced biofuels

Date:
October 15, 2012
Source:
Iowa State University
Summary:
A research team is working to develop hungry, robust microbes that can ferment biofuels from the bio-oil produced by rapidly heating biomass such as corn stalks and sawdust.

Zhanyou Chi, a post-doctoral researcher, examines a lab sample of bacteria feeding in the sugar-rich fraction of bio-oil.
Credit: Photo by Mike Krapfl

Microbes are working away in an Iowa State University laboratory to ferment biofuels from the sugar and acetate produced by rapidly heating biomass such as corn stalks and sawdust.

But it’s not an easy job for E. coli and C. reinhardtii.

The bacteria and microalgae, respectively, don’t like something in the bio-oil produced by fast pyrolysis – the rapid heating of biomass without oxygen and with catalysts. The result of the thermochemical process is a thick, brown oil that smells like molasses.

A research team led by Laura Jarboe, an Iowa State assistant professor of chemical and biological engineering, is feeding the bio-oil (also known as “pyrolytic sugars”) to the microbes. The E. coli are supposed to turn the levoglucosan in the sugar-rich fraction of bio-oil into ethanol and lactic acid; the C. reinhardtii are supposed to turn acetate-rich fractions into lipids for biodiesel.

It’s part of the hybrid approach Iowa State researchers are using to produce the next generation of biofuels. They’re combining two conversion paths – thermochemical and biochemical – to find efficient ways to produce renewable fuels and chemicals.

“The goal is to produce biorenewable fuels and chemicals in a manner that’s economically competitive with petroleum-based processes,” Jarboe said.

There are, however, contaminants and toxins in the bio-oil that are getting in the way of the fuel production. Jarboe and a research team are experimenting with pre-treatments of the bio-oil that could reduce the toxicity. And they’re working to develop microbes that can tolerate the contaminants.

In addition to Jarboe, the research team includes Robert C. Brown, the Iowa Farm Bureau Director of Iowa State’s Bioeconomy Institute, an Anson Marston Distinguished Professor in Engineering and the Gary and Donna Hoover Chair in Mechanical Engineering; Zhiyou Wen, an associate professor of food science and human nutrition; Zhanyou Chi, a post-doctoral research associate for Iowa State’s Center for Sustainable Environmental Technologies; Tao Jin, a doctoral student in chemical and biological engineering; and Yi Liang, a doctoral student in food science and human nutrition. The project is supported by a three-year, $300,000 grant from the National Science Foundation and a three-year, $315,020 grant from the Iowa Energy Center.

The researchers are using a technique called directed evolution to produce microbes that are more tolerant of the contaminants in bio-oil. The microbes are grown with higher and higher concentrations of bio-oil and as they divide, they replicate their DNA. Sometimes there are replication mistakes that lead to mutations.

“It could be a mistake that’s immediately lethal,” Jarboe said. “Or it could be a mistake that helps the microbe tolerate the problematic compounds and it grows faster.

“At the end of the process, we want to say, ‘Hey, I’ve got a great bug.’”

Every day researchers check the experiments for signs of progress. So far, Jarboe said the evolving bacteria and microalgae have been able to tolerate slightly higher concentrations of bio-oil.

When mutations eventually produce a better breed of microbe, the researchers will analyze genomic data to learn and understand the important mutations. That will allow researchers to duplicate the microbes for better biofuel production.

Jarboe said development of those hungry, robust microbes could lead to important advancements in biofuel production: a hybrid process that’s biorenewable, fast, cheap and doesn’t depend on food crops as a source of biomass.


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "Evolving microbes help engineers turn bio-oil into advanced biofuels." ScienceDaily. ScienceDaily, 15 October 2012. <www.sciencedaily.com/releases/2012/10/121015084649.htm>.
Iowa State University. (2012, October 15). Evolving microbes help engineers turn bio-oil into advanced biofuels. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2012/10/121015084649.htm
Iowa State University. "Evolving microbes help engineers turn bio-oil into advanced biofuels." ScienceDaily. www.sciencedaily.com/releases/2012/10/121015084649.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins