Featured Research

from universities, journals, and other organizations

Cell mechanism findings could one day be used to engineer organs

Date:
October 19, 2012
Source:
University of Texas at Dallas
Summary:
Biologists have teamed up with mechanical engineers to conduct cell research that provides information that may one day be used to engineer organs.

Wrinkle formation that occurred on a four-day-old subtilis biofilm was preceded by cell death.
Credit: Image courtesy of University of Texas at Dallas

Biologists have teamed up with mechanical engineers from the The University of Texas at Dallas to conduct cell research that provides information that may one day be used to engineer organs.

Related Articles


The research, published online in the Proceedings of the National Academy of Sciences, sheds light on the mechanics of cell, tissue and organ formation. The research revealed basic mechanisms about how a group of bacterial cells can form large three-dimensional structures.

"If you want to create an organism, the geometry of how a group of cells self-organizes is crucial," said Dr. Hongbing Lu, professor of mechanical engineering and holder of the Louis Beecherl Jr. Chair at UT Dallas and an author of the study. "We found that cell death leads to wrinkles, and the stiffer the cell the fewer wrinkles."

Organ formation is the result of individual cells teaming with others. The aggregate of the cells and their environment form a thin layer of what is known as a biofilm. These biofilms form 3-D wrinkled patterns.

Senior author Dr. Gürol Süel, now at the University of California, San Diego, and his colleagues noticed dead cells under the wrinkle pattern. They teamed with Lu to discover what came first -- the cells' death or the wrinkling. Lu is an expert in nanomechanics -- measuring forces on small objects.

They found that groups of cells dying together within the biofilm resulted in the formation of wrinkles. They also found that the stiffness of the biofilm affected the formation of wrinkles. This is significant because it lays the foundation for the first theory about building a structure in tissues and organs, taking both the biological and mechanical forces into consideration.

"There are ways to control whether a biofilm is soft or stiff, and then you control the wrinkling and the ultimate structure the cells become," Lu said.

Researchers then controlled the location where cells died and were able to create artificial wrinkle patterns, verifying their findings.

All of the research was done on bacteria known as Bacillus subtilis.

"Bacillus subtilis has many aspects that are similar to other cells," Lu said. "If we understand how this process works in bacteria, it can open up the door to higher levels of life."

The next step, Lu said, is to create more organized 3D structures using higher forms of life.

Yingjie Du, a doctoral student and Dr. Zhenxing Hu, a postdoctoral research associate in the Erik Jonsson School of Engineering and Computer Science at UT Dallas were part of the engineering team that contributed to this research. Researchers from UT Southwestern Medical Center, and Universitat Politécnica de Catalunya and Universitat Pompeu Fabra, both in Spain, also contributed.

This research was supported by the National Institutes of Health and the James S. McDonnell Foundation.


Story Source:

The above story is based on materials provided by University of Texas at Dallas. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Asally, M. Kittisopikul, P. Rue, Y. Du, Z. Hu, T. Cagatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, G. M. Suel. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1212429109

Cite This Page:

University of Texas at Dallas. "Cell mechanism findings could one day be used to engineer organs." ScienceDaily. ScienceDaily, 19 October 2012. <www.sciencedaily.com/releases/2012/10/121019130556.htm>.
University of Texas at Dallas. (2012, October 19). Cell mechanism findings could one day be used to engineer organs. ScienceDaily. Retrieved April 17, 2015 from www.sciencedaily.com/releases/2012/10/121019130556.htm
University of Texas at Dallas. "Cell mechanism findings could one day be used to engineer organs." ScienceDaily. www.sciencedaily.com/releases/2012/10/121019130556.htm (accessed April 17, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, April 17, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) — Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) — Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) — Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Boy or Girl? Intersex Awareness Is on the Rise

Boy or Girl? Intersex Awareness Is on the Rise

AP (Apr. 17, 2015) — At least 1 in 5,000 U.S. babies are born each year with intersex conditions _ ambiguous genitals because of genetic glitches or hormone problems. Secrecy and surgery are common. But some doctors and activists are trying to change things. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins