Featured Research

from universities, journals, and other organizations

New materials may help prevent infections by blocking initial bacterial attachment

Date:
October 26, 2012
Source:
AVS: Science & Technology of Materials, Interfaces, and Processing
Summary:
Recently a team of British researchers has discovered a new class of materials that resists bacterial attachment.

Bacteria's ability to cling to virtually any surface is a vexing problem in the medical community. Engineering a surface that can easily slough off these dangerous bugs has, until recently, had limited success. Recently, however, a team of British researchers has discovered a new class of materials that resists bacterial attachment. Now these scientists from the University of Nottingham, U.K., are ready to set out on the approval process that will take their research to the clinical testing stage, paving the way for medical applications.

Related Articles


The researchers will present their findings at the AVS 59th International Symposium and Exhibition, held Oct. 28 -- Nov. 2, in Tampa, Fla.

To date, scientists have been unable to fully explain how bacteria are able to adhere so durably to virtually any surface. Despite this limited understanding of bacteria-material interactions, the Nottingham researchers were able to screen thousands of different chemical combinations for resistance to bacterial adhesion. The studies revealed that one particular class of compounds, acrylates with hydrophobic groups, proved highly resistant to bacteria's sticky tendencies.

"The new materials are to bacteria what non-stick cookware is to food," said Andrew Hook, a researcher at the Nottingham School of Pharmacy. "Bacteria can stick to the surface of [traditional] medical devices and form a community, known as a biofilm, where the bacteria become highly resistant to antibiotics and the immune system."

By preventing the biofilm from forming on devices in service, the new materials help the immune system to simply eliminate the bacteria as if the device had never been inserted. In contrast, current antibacterial materials, like silver, actually kill bacteria.

After the new non-stick materials were identified, they were successfully tested on surfaces in the laboratory and on standard medical devices, such as catheters, within an animal model. In laboratory studies of the new materials, the researchers found a 96.7-percent reduction in bacterial coverage compared to commercially available silver-containing catheters for the bacterium Staphylococcus aureus.

By coating medical devices with the optimal polymer composition of one of this class of acrylates, for example the compound tricyclodecane-dimethanol diacrylate that the researchers tested, scientists believe they can prevent bacteria from attaching and also prevent associated infections, which could reduce health care costs.

The researchers are now ready to take their research to the next level and prepare the regulatory package to begin clinical trials. They hope the trials will show that by denying bacteria a foothold on medical equipment in humans, the chances of a patient contracting a medical device-associated infection are much lower.

Nottingham pharmacy professor Morgan Alexander hopes that since no antibiotics are used this will lead to a method to reduce infections from bacteria without the risk of antibiotic resistance developing. "The challenge now is to have materials recognized by the medical device industry," Alexander said. "That would allow us to develop products for specific applications. There's a lot of potential to improve human health, but we need to prove that."

The researchers are in discussions with potential partners to develop coated devices and are hopeful their material could reach the market in 5 to 10 years.


Story Source:

The above story is based on materials provided by AVS: Science & Technology of Materials, Interfaces, and Processing. Note: Materials may be edited for content and length.


Cite This Page:

AVS: Science & Technology of Materials, Interfaces, and Processing. "New materials may help prevent infections by blocking initial bacterial attachment." ScienceDaily. ScienceDaily, 26 October 2012. <www.sciencedaily.com/releases/2012/10/121026143219.htm>.
AVS: Science & Technology of Materials, Interfaces, and Processing. (2012, October 26). New materials may help prevent infections by blocking initial bacterial attachment. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2012/10/121026143219.htm
AVS: Science & Technology of Materials, Interfaces, and Processing. "New materials may help prevent infections by blocking initial bacterial attachment." ScienceDaily. www.sciencedaily.com/releases/2012/10/121026143219.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins