Featured Research

from universities, journals, and other organizations

Scientists reveal key protein interactions involved in neurodegenerative disease

Date:
November 8, 2012
Source:
The Scripps Research Institute
Summary:
Scientists have defined the molecular structure of an enzyme as it interacts with several proteins involved in outcomes that can influence neurodegenerative disease and insulin resistance. The enzymes in question, which play a critical role in nerve cell (neuron) survival, are among the most prized targets for drugs to treat brain disorders such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis (ALS).

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have defined the molecular structure of an enzyme as it interacts with several proteins involved in outcomes that can influence neurodegenerative disease and insulin resistance. The enzymes in question, which play a critical role in nerve cell (neuron) survival, are among the most prized targets for drugs to treat brain disorders such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis (ALS).

The study was published online ahead of print on Nov. 8, 2012, by the journal Structure.

The new study reveals the structure of a class of enzymes called c-jun-N-terminal kinases (JNK) when bound to three peptides from different protein families; JNK is an important contributor to stress-induced apoptosis (cell death), and several studies in animal models have shown that JNK inhibition protects against neurodegeneration.

"Our findings have long-range implications for drug discovery," said TSRI Professor Philip LoGrasso, who, along with TSRI Associate Professor Kendall Nettles, led the study. "Knowing the structure of JNK bound to these proteins will allow us to make novel substrate competitive inhibitors for this enzyme with even greater specificity and hopefully less toxicity."

The scientists used what they called structure class analysis, looking at groups of structures, which revealed subtle differences not apparent looking at them individually.

"From a structural point of view, these different proteins appear to be very similar, but the biochemistry shows that the results of their binding to JNK were very different," he said.

LoGrasso and his colleagues were responsible for creating and solving the crystal structures of the three peptides (JIP1, SAB, and ATF-2) with JNK3 using a technique called x-ray crystallography, while Nettles handled much of the data analysis.

All three peptides have important effects, LoGrasso said, inducing two distinct inhibitory mechanisms -- one where the peptide caused the activation loop to bind directly in the ATP pocket, and another with allosteric control (that is, using a location on the protein other than the active site). Because JNK signaling needs to be tightly controlled, even small changes in it can alter a cell's fate.

"Solving the crystal structures of these three bound peptides gives us a clearer idea of how we can block each of these mechanisms related to cell death and survival," LoGrasso said. "You have to know their structure to know how to deal with them."

The first authors of the study, "Structural Mechanisms of Allostery and Autoinhibition in JNK Family Kinases," which will appear in the December 5, 2012 print edition of Structure, are John D. Laughlin and Jerome C. Nwachukwu of TSRI. Other authors include Mariana Figuera-Losada and Lisa Cherry, also of TSRI.

The study was supported by the National Institutes of Health (grant number NS057153).


Story Source:

The above story is based on materials provided by The Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. JohnD. Laughlin, JeromeC. Nwachukwu, Mariana Figuera-Losada, Lisa Cherry, KendallW. Nettles, PhilipV. LoGrasso. Structural Mechanisms of Allostery and Autoinhibition in JNK Family Kinases. Structure, 2012; DOI: 10.1016/j.str.2012.09.021

Cite This Page:

The Scripps Research Institute. "Scientists reveal key protein interactions involved in neurodegenerative disease." ScienceDaily. ScienceDaily, 8 November 2012. <www.sciencedaily.com/releases/2012/11/121108131500.htm>.
The Scripps Research Institute. (2012, November 8). Scientists reveal key protein interactions involved in neurodegenerative disease. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2012/11/121108131500.htm
The Scripps Research Institute. "Scientists reveal key protein interactions involved in neurodegenerative disease." ScienceDaily. www.sciencedaily.com/releases/2012/11/121108131500.htm (accessed September 22, 2014).

Share This



More Mind & Brain News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins