Featured Research

from universities, journals, and other organizations

Novel type 2 diabetes genetic study involves five major ancestry groups

Date:
November 8, 2012
Source:
American Society of Human Genetics
Summary:
A consortium of scientists is taking a novel approach to detect the genetic variations that predispose individuals to type 2 diabetes. The 10,000 individuals (patients and controls) whose exomes, the 18,000 protein-coding genes, are from five major ancestry groups: African-American, East Asian, European, Hispanic and South Asian.

A consortium of scientists who are taking a novel approach in their research to detect the genetic variations that predispose individuals to type 2 diabetes provided an update of their findings at the American Society of Human Genetics (ASHG) 2012 meeting.

Among the project's novel characteristics is the ethnic diversity of the 10,000 individuals whose exomes, the 18,000 protein-coding genes, are being sequenced.

The researchers recruited 5,000 individuals with type 2 diabetes (T2D) from five major ancestry groups: African-American, East Asian, European, Hispanic and South Asian. The study population also includes an equal number of controls, individuals from these same ancestry groups who do not have T2D.

"Our hypothesis is that screening the exome in a range of diverse ethnic groups increases the range of variants of each gene surveyed, and thereby improves our ability to detect genes showing differences in the patterns of the DNA codes for proteins between individuals with type 2 diabetes and controls," said T.M. Teslovich, Ph.D., research fellow in statistical genetics at the University of Michigan, who presented the study at ASHG 2012.

The study is one of the three projects under the umbrella of the NIH-sponsored T2D-GENES (Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples) study.

The scientists' approach also will enable them to determine whether there are T2D risk variants that are unique to an ancestry group.

An initial analysis of the data on 3,500 African-American, East Asian and South Asian individuals identified about 1.6 million single nucleotide variants (SNVs), 71.5% of which were previously unknown.

"Only about 89,000, or 5.6%, of the 1.6 million variants are present in all three groups," said Dr. Teslovich.

About 35.4% of these SNVs were unique to African-American, while 35.4% and 30.6% occurred only in East Asian and South Asian samples, respectively. Dr. Teslovich pointed out that their analysis is too preliminary to state that these population-specific variants are associated with T2D and contribute to disease risk in a single population.

By the end of 2012, the researchers will complete sequencing, which began in 2011, Dr. Teslovich said. "A total of about 5,300 individuals, half with type 2 diabetes and half controls, have been sequenced thus far," she added.

By comparing the DNA of individuals with T2D and controls, the scientists hope to isolate genes or variants that increase or reduce an individual's predisposition for developing the disease, said Dr. Teslovich.

"The unique study design will yield a catalog of variation, including alleles that are common in the population as well as those that are observed in only a small number of individuals. We'll examine each of the variants to determine which may affect an individual's risk of developing type 2 diabetes," said Dr. Teslovich.

"In addition to exome-wide analysis, we are focusing detailed mapping efforts in regions of diabetes-related traits such as fasting glucose and insulin," she added. "We anticipate that analysis of the full dataset will lead to identification of causal genes and variants."

In addition to SNVs, the researchers are searching for insertions or deletions of DNA sequence within genes as well as incorrect numbers of whole genes. The latter is referred to as copy number variations.

All the DNA sequence data and medical information will be deposited into dbGaP, the repository for genotype-phenotype relationships sponsored by the National Center for Biotechnology Information of NIH. T2D-GENES is funded by NIH's National Institute of Diabetes and Digestive and Kidney Diseases and the National Human Genome Research Institute.

A total of 75 scientists at 27 universities and other institutions are conducting T2D-GENES studies. The principal investigators of T2D-GENES are Michael Boehnke, Ph.D., University of Michigan; Mark McCarthy, M.D., University of Oxford; David Altshuler, M.D., Ph.D., Broad Institute of Harvard and MIT; Ravindranath Duggirala, Ph.D., Texas Biomedical Research Institute; and Craig Hanis Ph.D., University of Texas at Houston. Dr. McCarthy and Nancy Cox, Ph.D., University of Chicago, lead the analysis committee for this project.


Story Source:

The above story is based on materials provided by American Society of Human Genetics. Note: Materials may be edited for content and length.


Cite This Page:

American Society of Human Genetics. "Novel type 2 diabetes genetic study involves five major ancestry groups." ScienceDaily. ScienceDaily, 8 November 2012. <www.sciencedaily.com/releases/2012/11/121108205846.htm>.
American Society of Human Genetics. (2012, November 8). Novel type 2 diabetes genetic study involves five major ancestry groups. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/11/121108205846.htm
American Society of Human Genetics. "Novel type 2 diabetes genetic study involves five major ancestry groups." ScienceDaily. www.sciencedaily.com/releases/2012/11/121108205846.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins