Featured Research

from universities, journals, and other organizations

Super storm tracked by European Space Agency water mission

Date:
November 9, 2012
Source:
European Space Agency (ESA)
Summary:
When millions of people are bracing themselves for the onslaught of extreme weather, as much information as possible is needed to predict the strength of the impending storm. The European Space Agency's SMOS mission again showed its versatility by capturing unique measurements of Hurricane Sandy. As its name suggests, the Soil Moisture and Ocean Salinity (SMOS) satellite was designed to measure how much moisture is held in soil and how much salt is held in the surface waters of the oceans.

Estimates of surface wind speeds (km/hr) from SMOS data along the track of Hurricane Sandy. Spanning 1800 km, this super storm is the largest Atlantic hurricane on record, devastating parts of the Caribbean and northeastern US in October 2012. The SMOS microwave radiometer, which operates in the L-band, has the unique ability to see through clouds and rain to provide reliable estimates of surface wind speeds in intense storms.
Credit: Ifremer

When millions of people are bracing themselves for the onslaught of extreme weather, as much information as possible is needed to predict the strength of the impending storm. The European Space Agency's SMOS mission again showed its versatility by capturing unique measurements of Hurricane Sandy.

Related Articles


As its name suggests, the Soil Moisture and Ocean Salinity (SMOS) satellite was designed to measure how much moisture is held in soil and how much salt is held in the surface waters of the oceans.

This information is helping to improve our understanding of the water cycle -- an essential component of the Earth system.

However, this state-of-the-art Earth Explorer mission has demonstrated that its instrumentation and measuring techniques can be used to offer much more.

Since SMOS has the ability to see through clouds and it is little affected by rain, it can also provide reliable estimates of the surface wind speeds under intense storms.

Parts of the Caribbean and northeastern US are still suffering the aftermath of Hurricane Sandy, which is the largest Atlantic hurricane on record.

Unusually, Sandy was a hybrid storm, tapping energy from the evaporation of seawater like a hurricane and from different air temperatures like a winter storm. These conditions generated a super storm that spanned an incredible 1800 km.

As it orbited above, the satellite intercepted parts of Hurricane Sandy at least eight times as the storm swept over Jamaica and Cuba around 25 October, until its landfall in New Jersey, US, four days later.

The data from these encounters have been used to estimate the speed of the wind over the ocean's surface.

SMOS carries a novel microwave sensor to capture images of 'brightness temperature'. These images correspond to radiation emitted from the surface of Earth, which are then used to derive information on soil moisture and ocean salinity.

Strong winds over oceans whip up waves and whitecaps, which in turn affect the microwave radiation being emitted from the surface. This means that although strong storms make it difficult to measure salinity, the changes in emitted radiation can, however, be linked directly to the strength of the wind over the sea.

This method of measuring surface wind speeds was developed by scientists at the French Research Institute for Exploration of the Sea and Collect Localisation Satellites, CLS, within ESA's Earth Observation Support to Science Element programme.

The method was originally used during Hurricane Igor in 2010, but has again proven accurate. During Hurricane Sandy, SMOS data compare well with realtime measurements from meteorological buoys as the super storm passed between the coast of the US and the Bermuda Islands.

Moreover, NOAA's Hurricane Research Division flew a P-3 aircraft seven times into Hurricane Sandy to gather measurements of surface wind speeds, rain and other meteorological parameters. One of these airborne campaigns coincided with an overpass of the satellite.

Keeping in mind the significantly differing sampling characteristics between the SMOS radiometer and the aircraft sensor, there was excellent agreement in the measurements. Both instruments consistently detected a wind band 150 km south of the hurricane eye, with a speed of just over 100 km/h.

Being able to measure ocean surface wind in stormy conditions with the synoptic and frequent coverage of SMOS is paramount for tracking and forecasting hurricane strength.

Although ESA's Earth Explorers are developed to address specific scientific issues, they continue to demonstrate their versatility.


Story Source:

The above story is based on materials provided by European Space Agency (ESA). Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency (ESA). "Super storm tracked by European Space Agency water mission." ScienceDaily. ScienceDaily, 9 November 2012. <www.sciencedaily.com/releases/2012/11/121109084106.htm>.
European Space Agency (ESA). (2012, November 9). Super storm tracked by European Space Agency water mission. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/11/121109084106.htm
European Space Agency (ESA). "Super storm tracked by European Space Agency water mission." ScienceDaily. www.sciencedaily.com/releases/2012/11/121109084106.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins