Featured Research

from universities, journals, and other organizations

New way of making glass

Date:
November 9, 2012
Source:
University of Bristol
Summary:
A new way to make glass has been discovered using a method that controls how the atoms within a substance are arranged around each other.

Making glass by changing the structure of a liquid. Left: normal liquid alloy of nickel (silver) and phosphorous (orange) atoms. Encouraging atoms to form bicapped square antiprisms (inset) turned the liquid into a solid glass (right) where the nickel (turquoise) and phosphorus (green) atoms in antiprisms are drawn larger.
Credit: Image courtesy of University of Bristol

A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are arranged around each other.

Related Articles


The research is published November 9 in Physical Review Letters.

When cooling a liquid below its melting temperature it either crystallizes or transforms into a glass. Glass is a peculiar state of matter: it has the mechanical properties of a solid but an amorphous structure like a liquid.

As long ago as 1952, Sir Charles Frank at the University of Bristol argued that the structure of glasses should not be entirely disordered like a liquid but rather that it should be filled with structural motifs like the bicapped square antiprism [inset pictured].

Although such motifs have very recently been found in experiments and computer simulations on glassy materials, it has not been clear what role these play in how a liquid becomes a (glassy) solid.

The Düsseldorf and Bristol researchers created a new type of glass in a computer through encouraging atoms in a nickel-phosphorus alloy to form the pictured polyhedron. When these polyhedra formed, the liquid no longer flowed -- it had become a solid. In other words, they found that instead of cooling, a liquid can turn into a glass by changing its structure.

Dr Paddy Royall of the University of Bristol said: "The method we developed employed computer simulations of liquids, performed on the University of Bristol's BlueCrystal supercomputer, where the atoms were driven to form more polyhedra.

"Although many more polyhedra were formed, the atomic arrangements were still disordered rather than a periodic arrangement as seen in crystals. This means that the solid that was formed had to be a glass."

Dr Thomas Speck of Heinrich-Heine-Universität, Düsseldorf said: "These results mean that structure can control whether a material is liquid or solid and thus open the way to design new glasses: for example metallic glasses whose great lightness and strength promise exciting applications and chalcogenide glasses which are used in memory applications and phase switch memory, a possible future technology for data storage."


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. thomas Speck, Alex Malins, and C. Patrick Royall. First-Order Phase Transition in a Model Glass Former: Coupling of Local Structure and Dynamics. Phys. Rev. Lett., 109, 195703 (2012) DOI: 10.1103/PhysRevLett.109.195703

Cite This Page:

University of Bristol. "New way of making glass." ScienceDaily. ScienceDaily, 9 November 2012. <www.sciencedaily.com/releases/2012/11/121109111515.htm>.
University of Bristol. (2012, November 9). New way of making glass. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2012/11/121109111515.htm
University of Bristol. "New way of making glass." ScienceDaily. www.sciencedaily.com/releases/2012/11/121109111515.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) — In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) — Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) — The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins