Featured Research

from universities, journals, and other organizations

Cilia guide neuronal migration in developing brain

Date:
November 12, 2012
Source:
Emory University
Summary:
A new study demonstrates the dynamic role cilia play in guiding the migration of neurons in the embryonic brain. Cilia are tiny hair-like structures on the surfaces of cells, but here they are acting more like radio antennae. In developing mouse embryos, researchers were able to see cilia extending and retracting as neurons migrate. The cilia appear to be receiving signals needed for neurons to find their places.

A new study demonstrates the dynamic role cilia play in guiding the migration of neurons in the embryonic brain. Cilia are tiny hair-like structures on the surfaces of cells, but here they are acting more like radio antennae.

In developing mouse embryos, researchers were able to see cilia extending and retracting as neurons migrate. The cilia appear to be receiving signals needed for neurons to find their places.

Genetic mutations that cause the neurodevelopmental disorder Joubert syndrome interfere with these migratory functions of cilia, the researchers show. The finding suggests that problems with neuron migration may explain some aspects of Joubert syndrome patients' symptoms.

The results were published in the journal Developmental Cell.

"The most surprising thing was how dynamic the cilia are," says Tamara Caspary, PhD, assistant professor of human genetics at Emory University School of Medicine. "As interneurons migrate into the developing cerebral cortex, they move in steps. When they pause, we could see the cilia extending, as if the interneurons are trying to figure out where to go next."

The paper is the result of a collaboration between Caspary's laboratory and that of Eva Anton, PhD, professor of cell and molecular physiology at University of North Carolina School of Medicine. First author Holden Higginbotham, formerly a postdoc in Anton's laboratory, is now a faculty member at Brigham Young University in Idaho.

Readers may be familiar with motile cilia, which can be found on a paramecium or in our trachea or reproductive organs. In contrast, primary (non-motile) cilia can be found on almost every cell in the human body, each cell having just one. Ciliopathies are a class of genetic disorders involving defects in cilia, and include kidney and eye diseases as well as Joubert syndrome.

Joubert syndrome affects the development of the cerebellum and brain stem, leading to lack of muscle control, breathing problems, and sometimes intellectual disability.

Caspary's laboratory has been studying Arl13b, a gene mutated in Joubert syndrome. Mutations in Arl13b lead to cilia that are short and stubby.

"It's a useful tool for studying the role of cilia in development, because it doesn't take a sledgehammer to the entire structure," Caspary says.

Exactly how Arl13b contributes to the function of cilia is unclear -- it appears to be involved in protein transport needed for building cilia because when it is hyperactivated, cilia are longer.

Caspary's and Anton's laboratories teamed up to look at neuronal migration in mouse embryos where Arl13b was deleted, but only in some types of neurons. "Interneurons" form connections between other neurons and do not connect to muscles or sensory organs. They observed that when Arl13b was deleted in interneurons, those cells did not migrate properly through the developing cortex of the brain.

The team probed cilia by using mice that produced a red fluorescent protein within cilia. Slices of embryonic brain were examined with a confocal microscope, under conditions where the cells stay alive and continue moving for several hours.

The scientists could see the interneurons migrating in spurts, with the cilia tending to extend and move "like basketball players' arms" when the cells paused. In the Arl13b deleted mice, the cilia did not extend as much and often could be seen only as red dots. Reintroducing Arl13b could rescue these defects, while a form of Arl13b found in Joubert syndrome patients could not.

How defects in cilia contribute to Joubert syndrome is complex; cilia are needed for Hedgehog signaling, machinery that controls embryonic patterning. Caspary says the neuron migration problem may explain the intellectual disability aspect, while Hedgehog defects may explain impaired development of the cerebellum and brainstem.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Holden Higginbotham, Tae-Yeon Eom, LauraE. Mariani, Amelia Bachleda, Joshua Hirt, Vladimir Gukassyan, Corey L. Cusack, Cary Lai, Tamara Caspary, E.S. Anton. Arl13b in Primary Cilia Regulates the Migration and Placement of Interneurons in the Developing Cerebral Cortex. Developmental Cell, 2012; 23 (5): 925 DOI: 10.1016/j.devcel.2012.09.019

Cite This Page:

Emory University. "Cilia guide neuronal migration in developing brain." ScienceDaily. ScienceDaily, 12 November 2012. <www.sciencedaily.com/releases/2012/11/121112150343.htm>.
Emory University. (2012, November 12). Cilia guide neuronal migration in developing brain. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2012/11/121112150343.htm
Emory University. "Cilia guide neuronal migration in developing brain." ScienceDaily. www.sciencedaily.com/releases/2012/11/121112150343.htm (accessed October 2, 2014).

Share This



More Plants & Animals News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study Says Losing Sense Of Smell Can Indicate Death

Study Says Losing Sense Of Smell Can Indicate Death

Newsy (Oct. 2, 2014) Researchers found elderly adults with a poor sense of smell are more likely to die within five years. Video provided by Newsy
Powered by NewsLook.com
Dolphins and Turtles Under Threat in Pakistan

Dolphins and Turtles Under Threat in Pakistan

AFP (Oct. 2, 2014) The turtles and Dolphins of Pakistan's Indus river - both protected by law - are in a fight for their survival as man's activities threatens their futures. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
'Harvest Break' Endures in Maine Potato Fields

'Harvest Break' Endures in Maine Potato Fields

AP (Oct. 2, 2014) Educators and farmers are clinging to a tradition aimed at giving farmers much-needed help in getting potatoes out of the fields and into storage before the ground freezes in the nation's northeast corner. (Oct. 2) Video provided by AP
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins