Featured Research

from universities, journals, and other organizations

Glutamate neurotransmission system may be involved with depression risk

Date:
November 13, 2012
Source:
Massachusetts General Hospital
Summary:
Researchers using a new approach to identifying genes associated with depression have found that variants in a group of genes involved in transmission of signals by the neurotransmitter glutamate appear to increase the risk of depression.

Researchers using a new approach to identifying genes associated with depression have found that variants in a group of genes involved in transmission of signals by the neurotransmitter glutamate appear to increase the risk of depression. The report published in the journal Translational Psychiatry suggests that drugs targeting the glutamate system may help improve the limited success of treatment with current antidepressant drugs.

Related Articles


"Instead of looking at DNA variations one at a time, we looked at grouping of genes in the same biological pathways and found that a set of genes involved in glutamatergic transmisson was associated with the risk of depression," says Jordan Smoller, MD, ScD, director of the Psychiatric and Neurodevelopmental Genetics Unit in the Massachusetts General Hospital (MGH) Department of Psychiatry, senior author of the study. "Our findings are particularly interesting in light of recent studies showing that drugs affecting glutamate transmission can have rapid antidepressant effects."

While the risk of depression clearly runs in families, the genome-wide association studies typically used to identify gene variants that increase disease risk have been unable to find strongly associated genes. The research team -- which includes investigators from the Broad Institute of MIT and Harvard and other research centers in the U.S., Australia and the Netherlands -- adopted a strategy called gene set pathway analysis.

Starting with a set of genes that previous studies had implicated in depression, they used an analysis process called text mining to scan the medical literature for information on the biological function of these genes. Based on those findings, they identified 178 biological pathways that included these genes. Only one of those pathways -- the one involved in transmission of neural signals carried by glutamate -- was significantly associated with the risk for depression.

"Glutamate is the excitatory transmitter most widely used by the central nervous system, and several studies in animals and humans have suggested that it may play a role in depression," explains Smoller, an associate professor of Psychiatry at Harvard Medical School. "Most intriguingly, recent studies have found that ketamine -- a drug known to block one glutamate receptor -- appears to have antidepressant effects that are much faster than those of traditional antidepressants, which can take several weeks to become effective. Now additional research needs to confirm these findings and investigate exactly how variation in glutamate function affects brain systems involved in depression."

Phil Hyoun Lee, PhD, of the MGH Psychiatric and Neurodevelopmental Genetics Unit (PNGU) is lead author of the Translational Psychiatry report. Additional co-authors are Roy Perlis, MD, Richie Siburian, Stephen Haddad, MS, Catherine Mayerfeld, and Shaun Purcell, PhD, MGH PNGU; Erroll Rueckert, PhD, MGH Center for Human Genetic Research; Jae-Yoon Jung, PhD, Harvard Medical School; Enda Byrne, PhD, Naomi Wray, PhD, and Nicholas Martin, PhD, Queensland Institute of Medical Research, Australia; Andrew Heath, DPhil, Michele Pergadia, PhD, and Pamela Madden, PhD, Washington University, St. Louis; Dorret Boomsma, PhD, and B.W. Penninx, PhD, VU University, Amsterdam, The Netherlands; and Pamela Sklar, MD, PhD, Mount Sinai School of Medicine, New York. Lee, Perlis, Rueckert, Purcell and Smoller are also affiliated with the Broad Institute. The study was supported by grants from the National Institute of Mental Health.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. P H Lee, R H Perlis, J-Y Jung, E M Byrne, E Rueckert, R Siburian, S Haddad, C E Mayerfeld, A C Heath, M L Pergadia, P A F Madden, D I Boomsma, B W Penninx, P Sklar, N G Martin, N R Wray, S M Purcell, J W Smoller. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Translational Psychiatry, 2012; 2 (11): e184 DOI: 10.1038/tp.2012.95

Cite This Page:

Massachusetts General Hospital. "Glutamate neurotransmission system may be involved with depression risk." ScienceDaily. ScienceDaily, 13 November 2012. <www.sciencedaily.com/releases/2012/11/121113134807.htm>.
Massachusetts General Hospital. (2012, November 13). Glutamate neurotransmission system may be involved with depression risk. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/11/121113134807.htm
Massachusetts General Hospital. "Glutamate neurotransmission system may be involved with depression risk." ScienceDaily. www.sciencedaily.com/releases/2012/11/121113134807.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins