Featured Research

from universities, journals, and other organizations

Roots of deadly 2010 India flood identified; Findings could improve warnings

Date:
November 13, 2012
Source:
University of Washington
Summary:
New research indicates that flash flooding that swept through the mountain town of Leh, India, in 2010 was set off by a string of unusual weather events similar to those that caused devastating flash floods in Colorado and South Dakota in the 1970s.

The storm, formed when unusual winds from the east organized clouds that had formed high in the mountains, tapped into moisture from both the Bay of Bengal and the Arabian Sea.
Credit: Image courtesy of University of Washington

On the night of Aug. 5, 2010, as residents slept, water began rushing through Leh, an Indian town in a high desert valley in the Himalayas.

Related Articles


Average total rainfall in the area for August is about a half-inch. During this 24-hour period more than 8 inches fell, causing severe damage and leaving 193 dead, hundreds missing and thousands homeless.

"Flash flooding events don't happen often but when they do they are some of the scariest, most dangerous and quickest natural disasters that can happen," said Kristen Rasmussen, a University of Washington graduate student in atmospheric sciences. "But now that we know what types of conditions to look out for, flash flood warnings in remote regions of India might be possible."

Rasmussen and Robert Houze, a UW professor in atmospheric sciences, studied satellite images and what's called re-analysis data to piece together what happened to create such a torrential downpour. Their conclusions -- including that the flash flood was set off by a string of unusual weather events not unlike those that caused devastating flash floods in Colorado and South Dakota in the 1970s -- appear in the Nov. 14 Bulletin of the American Meteorological Society.

They found that on three consecutive days clouds formed high in the mountains to the east over the Tibetan Plateau. By itself, that isn't uncommon, Rasmussen said.

"What's different in this case is that there was the unusual wind coming from the east and blowing west," she said. That helped the clouds clump together and build into a larger storm system capable of creating heavy rain over Leh, which is 11,480 feet above sea level.

At the same time, low-level winds carried in moisture from both the Bay of Bengal and the Arabian Sea. "The storm, forming just up the slope, was able to tap into that additional moisture," she said.

Typically, such large storm systems don't have the chance to build because each day as the sun sets, the warm air that has helped the clouds form and lift gets cooler. The clouds then die out in the evening. But during those three days of August 2010, the unusual wind blew through the night, spurring the clouds to continue building into a system capable of heavy rain.

Above-average rain fell on the first two days. Since the region typically gets so little rainfall, the soil doesn't absorb water well.

"The key is that this happened for three successive days. If the third day hadn't happened or if the first two days hadn't set the process in motion, there probably wouldn't have been such a devastating flash flood," Rasmussen said.

The situation is reminiscent of weather that caused deadly flooding through the Big Thompson Canyon in Colorado in 1976 and the Black Hills of South Dakota in 1972. In all three cases, large organized clouds gathered high in the mountains and drew moisture up the slope of the mountain into the storms.

The resulting heavy rains are uncommon in mountains, where there typically isn't enough moisture to cause such dramatic rain. They are also more dangerous than storms in the plains, where water can spread more evenly. In the mountains, the water is funneled into valleys where it accumulates into a narrow space and can form a flash flood.

"A flash flooding-type storm could be moved out onto the plains and simply cause rain across a wide area. But in the right place at the wrong time it can be devastating," Rasmussen said.

Now that researchers have identified these common elements, including organized clouds high in the mountains on the edge of an arid plain with unusual access to moisture, weather forecasters can potentially warn people who could be in danger if a flash flood happens, she said.

There were some differences between the U.S. floods and the Leh incident. For instance, in the U.S., the storms didn't move very much. In Leh, for three days the storms moved along the Tibetan plateau but all the rain funneled into the valley where Leh is situated.

In addition to viewing satellite images, Rasmussen and Houze examined data created by using observations of actual conditions to adjust forecasts in retrospect. This re-analysis data included information collected from surface measurements and weather balloons that track things like pressure patterns and moisture in the region. The researchers also recently completed a high-resolution modeling study confirming the findings in the paper.

The National Science Foundation and NASA funded the research.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Nancy Gohring. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kristen L. Rasmussen, Robert A. Houze. A flash flooding storm at the steep edge of high terrain: Disaster in the Himalayas. Bulletin of the American Meteorological Society, 2012; 120404072510007 DOI: 10.1175/BAMS-D-11-00236.1

Cite This Page:

University of Washington. "Roots of deadly 2010 India flood identified; Findings could improve warnings." ScienceDaily. ScienceDaily, 13 November 2012. <www.sciencedaily.com/releases/2012/11/121113151127.htm>.
University of Washington. (2012, November 13). Roots of deadly 2010 India flood identified; Findings could improve warnings. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/11/121113151127.htm
University of Washington. "Roots of deadly 2010 India flood identified; Findings could improve warnings." ScienceDaily. www.sciencedaily.com/releases/2012/11/121113151127.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins