Featured Research

from universities, journals, and other organizations

Midges in a heat-based test of endurance: Evolutionary history determines adaptability to high temperatures

Date:
November 20, 2012
Source:
Senckenberg Research Institute and Natural History Museum
Summary:
Whether midges can reproduce successfully at high temperatures depends closely on their evolutionary history. Accordingly, the manner in which they deal with heat stress depends not only on whether a representative of this midge species comes from northern or southern Europe and is therefore more accustomed to higher temperatures.

Living in fresh water all over Europe, the midge Chironomus riparius.
Credit: İB. Valentine

Whether midges can reproduce successfully at high temperatures depends closely on their evolutionary history. Accordingly, the manner in which they deal with heat stress depends not only on whether a representative of this midge species comes from northern or southern Europe and is therefore more accustomed to higher temperatures. This was reported recently by scientists from the Biodiversity and Climate Research Centre (BiK-F) at the Goethe University and the Senckenberg Research Institute in the specialist journal Oecologia. In order to judge the effect of global climate change, it is therefore necessary to observe both climatic and genetic data.

Related Articles


The team led by Prof. Markus Pfenninger, Goethe University and Biodiversity and Climate Research Centre (BiK-F) and Dr. Carsten Nowak, Senckenberg Research Institute and BiKF, collected midge larvae of the widespread species Chironomus riparius in southern, central and northern Europe and reared them at three different constant temperatures in the laboratory. The 20, 24 or 28 °C chosen for the experiment represent approximately the average temperatures faced by the midge larvae at their place of origin during the main breeding period in summer. The result: the number of larvae that ultimately grow into midges at the same temperature depends firstly on the origin of the population. Secondly, the warmer it is, the poorer the chances of breeding success for the population in general, but to different degrees.

"The relative breeding success within species therefore depends on how high the average summer temperatures are in the places of origin," explains Pfenninger. Midge populations from Portugal and southern France, which are exposed to higher average temperatures in summer, were therefore more successful breeders at higher temperatures in the experiment. This indicates local adjustment to local climate conditions.

The additional examination of the genotype of the midge also shows that the breeding success is not only explained by the temperature in the place of origin, but also by the population history and the extent of existing genetic variability. In addition to natural selection, chance also plays a role here, because in a new population established by only aede newly e few individuals, not all genetic variants are represented. Due to population size fluctuations caused by environmental conditions, in separate populations some genetic variants disappear, others are newly generated by mutations. Caused by this genetic variability, populations of one species often exhibit different characteristics. Moreover, the extent of existing genetic variability is of importance: the higher it is, the better the population is able to resist to stress and to adapt to changing conditions.

The team sees the findings as an important step towards a better understanding of climate adaptation. "The study shows that both the population history and the climate of their previous habitat must be observed in order to be able to predict how a species will react to climate warming," summarises co-author Dr Carsten Nowak. Midges are particularly interesting research objects, as they have settled a large habitat, which -- if we compare, for example, southern and northern Europe -- encompasses a difference in temperature of up to 10 degrees Celsius. At the same time their bodily temperature is controlled solely by the external temperature. The next step will be to examine the genotype of midges for adaption in metabolism, so that the differences between the populations can also be explained functionally.


Story Source:

The above story is based on materials provided by Senckenberg Research Institute and Natural History Museum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nemec, Sabrina; Patel, Simit; Nowak, Carsten & Pfenninger Markus. Evolutionary determinants of population differences in populations growth rate x habitat temperature interactions in Chironomus riparius. Oecologia, 2012 DOI: 10.1007/s00442-012-2517-30

Cite This Page:

Senckenberg Research Institute and Natural History Museum. "Midges in a heat-based test of endurance: Evolutionary history determines adaptability to high temperatures." ScienceDaily. ScienceDaily, 20 November 2012. <www.sciencedaily.com/releases/2012/11/121120084931.htm>.
Senckenberg Research Institute and Natural History Museum. (2012, November 20). Midges in a heat-based test of endurance: Evolutionary history determines adaptability to high temperatures. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2012/11/121120084931.htm
Senckenberg Research Institute and Natural History Museum. "Midges in a heat-based test of endurance: Evolutionary history determines adaptability to high temperatures." ScienceDaily. www.sciencedaily.com/releases/2012/11/121120084931.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) — The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) — Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) — Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins