Featured Research

from universities, journals, and other organizations

Capturing living cells in micro pyramids

Date:
November 21, 2012
Source:
University of Twente
Summary:
Imagine a field full of pyramids, but on a micro scale. Each of the pyramids hides a living cell. Thanks to 3-D micro- and nano-scale fabrication, this is possible and there are promising new applications in the offing. One of them is applying the micro pyramids for cell research: thanks to the open 'walls' of the pyramids, the cells can interact.

3-D nanofabrication of fluidic components by corner lithography.
Credit: Image courtesy of University of Twente

Imagine a field full of pyramids, but on a micro scale. Each of the pyramids hides a living cell. Thanks to 3-D micro- and nano-scale fabrication, this is possible and there are promising new applications in the offing. One of them is applying the micro pyramids for cell research: thanks to the open 'walls' of the pyramids, the cells can interact.

Scientists of the research institutes MESA+ and MIRA of the University of Twente in The Netherlands present this new technology and first applications in the journal Small.

Most cell studies take place in 2-D: this is not a natural situation, because cells organize themselves in differently in the human body. If you give the cells room to move in three dimensions, the set-up is closer to what we find in nature. This is possible in the 'open pyramids' fabricated in the NanoLab of the MESA+ Institute for Nanotechnology of the University of Twente.

Tiny corner remains filled

If you join a number of flat silicon surfaces to form a sharp corner, it is possible to deposit another material on them. After having removed the the bulk of the material, however, a small amount of material remains in the corner. This tiny tip can be used for an Atomic Force Microscope, or, in this case, for forming a micro pyramid.

Catching cells

In cooperation with UT's MIRA Institute for Biomedical Technology and Technical Medicine, the nanoscientists have explored the possibilities of applying the pyramids as 'cages' for cells. First experiments with polystyrene balls worked out well. The next experiments involved capturing chondrocytes, cells forming cartilage. Moved by capillary fluid flow, these cells automatically 'fall' into the pyramid through a hole at the bottom. Soon after they settle in their 3-D cage, cells begin to interact with cells in adjacent pyramids. Changes in the phenotype of the cell can now be studied in a better way than in the usual 2-D situation. It is therefore a promising tool to be used in tissue regeneration research.

The Dutch scientists expect to develop extensions to this technology: the edges of the pyramid can be made hollow and function as fluid channels. Between the pyramids, it is also possible to create nanofluidic channels, which could be used to feed the cells.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erwin J. W. Berenschot, Narges Burouni, Bart Schurink, Joost W. van Honschoten, Remco G. P. Sanders, Roman Truckenmuller, Henri V. Jansen, Miko C. Elwenspoek, Aart A. van Apeldoorn, Niels R. Tas. 3D Nanofabrication of Fluidic Components by Corner Lithography. Small, 2012; DOI: 10.1002/smll.201201446

Cite This Page:

University of Twente. "Capturing living cells in micro pyramids." ScienceDaily. ScienceDaily, 21 November 2012. <www.sciencedaily.com/releases/2012/11/121121130701.htm>.
University of Twente. (2012, November 21). Capturing living cells in micro pyramids. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2012/11/121121130701.htm
University of Twente. "Capturing living cells in micro pyramids." ScienceDaily. www.sciencedaily.com/releases/2012/11/121121130701.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
Get A Mortgage, Receive A Cat — Only In Russia

Get A Mortgage, Receive A Cat — Only In Russia

Newsy (Sep. 2, 2014) — The incentive is in keeping with a Russian superstition that it's good luck for a cat to be the first to cross the threshold of a new home. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins