Featured Research

from universities, journals, and other organizations

Polymer chemistry: Dual-function molecules enhance widely used chemical reaction while reducing harmful by-products

Date:
November 23, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Production of biocompatible and super-absorbent materials may become easier. Using a modification to the high-precision technique known as atom transfer radical polymerization (ATRP), which links molecules into long chains, researchers have developed new compounds that can directly polymerize acidic vinyl monomers, such as acrylic acid.

Acrylic acid-based polymers and co-polymers (pictured) can now be synthesized using free radical chemistry, thanks to new ligand–initiator type molecules.
Credit: Copyright : 2012 A*STAR Institute of Chemical and Engineering Sciences

Production of biocompatible and super-absorbent materials may become easier, thanks to Anbanandam Parthiban and co-workers at the A*STAR Institute of Chemical and Engineering Sciences. Using a modification to the high-precision technique known as atom transfer radical polymerization (ATRP), which links molecules into long chains, the researchers have developed new compounds that can directly polymerize acidic vinyl monomers, such as acrylic acid.

Acrylic acid polymers are water-absorbing materials widely used in diapers and as emulsifying agents for pharmaceuticals and cosmetics.

Previous attempts to use ATRP with polar vinyl monomers, including acrylic acid, were unsuccessful, a failure that some chemists attributed to catalyst 'poisoning' by carboxylic acids. Parthiban and his team's compounds resolve this problem by binding to the catalyst while simultaneously initiating the radical polymerization process. This process prevents poisoning and dramatically reduces metallic waste.

Despite ATRP's inability to directly produce acrylic acid polymers, it is used in laboratories worldwide: it allows researchers to assemble complex polymers in a step-by-step fashion that gives enormous control over product architectures. The key is using a catalyst that can readily switch between two oxidation states, such as a copper salt, explains Parthiban. The copper catalyst first interacts with an ATRP initiator molecule to activate organic free radicals and an oxidized metal complex. The free radicals then quickly polymerize target monomers, while the metal complex undergoes equilibrium with a dormant, lower oxidation state. With appropriate reaction conditions, chemists can then restart polymerization with new monomers.

Parthiban and co-workers addressed ATRP's limitation by developing 'unimolecular ligand-initiator systems' (ULIS), a series of branched molecules containing multiple binding sites for copper atoms, as well as halogens for activating free radical species. In this approach, the ULIS molecules become part of the polymer chain during the active-dormant cycles instead of remaining isolated. The researchers envisaged that this interconnection would suppress the acidic side-reactions that lead to catalyst poisoning.

Experiments by the researchers proved their theories correct: they could efficiently polymerize acrylic acid and other vinyl monomers using ULIS-promoted ATRP (see image). Surprisingly, they found that these reactions could be achieved using less than 100 parts-per-million concentrations of copper catalyst, a quantity comparable to residues left in conventional ATRP purified polymers.

Parthiban notes that although the ULIS ligands are part of the polymer chain and might be expected to produce high amounts of metal waste, the homogenous nature of intramolecular-based free radical polymerization allows less metal to be used -- an important consequence for sustainable chemistry efforts.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Satyasankar Jana, Anbanandam Parthiban, Foo Ming Choo. Unimolecular ligand–initiator dual functional systems (ULIS) for low copper ATRP of vinyl monomers including acrylic/methacrylic acids. Chemical Communications, 2012; 48 (35): 4256 DOI: 10.1039/C2CC16663A

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Polymer chemistry: Dual-function molecules enhance widely used chemical reaction while reducing harmful by-products." ScienceDaily. ScienceDaily, 23 November 2012. <www.sciencedaily.com/releases/2012/11/121123132615.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, November 23). Polymer chemistry: Dual-function molecules enhance widely used chemical reaction while reducing harmful by-products. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/11/121123132615.htm
The Agency for Science, Technology and Research (A*STAR). "Polymer chemistry: Dual-function molecules enhance widely used chemical reaction while reducing harmful by-products." ScienceDaily. www.sciencedaily.com/releases/2012/11/121123132615.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins