Featured Research

from universities, journals, and other organizations

New genetic test detects early breast cancer and identifies future risk

Date:
November 29, 2012
Source:
Federation of American Societies for Experimental Biology
Summary:
Breast cancer detection has improved, but more work remains to ensure accurate diagnosis, and to assess future risk. Researchers are developing a test of gene action that predicts cancer risk at first diagnosis, and into the future. This research discusses how genetic switches, which are turned on and off in regular cellular development, can be analyzed in minute detail to determine the presence, or risk, of breast cancer growth.

Physicians may now be better at detecting breast cancer than ever before, but much more work remains to ensure accurate diagnosis is possible and especially to assess future risk. That's why researchers from Germany have been working to develop a new test of gene action to predict cancer risk both at first diagnosis and into the future. In a new research report appearing in the December 2012 issue of The FASEB Journal, researchers show that the various genetic switches, which are turned on and off in the regular development of every cell in the body, can be analyzed in minute detail to determine the presence or risk of breast cancer growth.

"We hope that our results help to develop tools to identify breast cancer patients when tumors are still small, and eventually curable," said Clarissa Gerhauser, Ph.D., a researcher involved in the work from the Division of Epigenomics and Cancer Risk Factors at the German Cancer Research Center in Heidelberg, Germany. "These tools might hopefully also help to predict the progression of tumor development and guide decisions on cancer treatment."

To make this advance, Gerhauser and colleagues extracted DNA from 10 small tumor tissue samples and 10 normal breast tissues from breast cancer patients. They made small fragments from the extracted DNA and identified the genetic switches within those fragments. By comparing the results from various combinations of DNA fragments, scientists discovered which switches were more prevalent in tumor tissue than in normal breast tissue. The methods used to quantify the switches are extremely sensitive, making it feasible that small biopsies would be sufficient for analysis and testing.

"This is a milestone. The method described detects activity at the genetic level, which often occurs well before any outward symptoms occur," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Not only could this allow for earlier diagnosis of breast cancer and more accurate risk assessment, but eventually, this technique might be used in other types of cancer as well."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology. "New genetic test detects early breast cancer and identifies future risk." ScienceDaily. ScienceDaily, 29 November 2012. <www.sciencedaily.com/releases/2012/11/121129130506.htm>.
Federation of American Societies for Experimental Biology. (2012, November 29). New genetic test detects early breast cancer and identifies future risk. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2012/11/121129130506.htm
Federation of American Societies for Experimental Biology. "New genetic test detects early breast cancer and identifies future risk." ScienceDaily. www.sciencedaily.com/releases/2012/11/121129130506.htm (accessed April 21, 2014).

Share This



More Health & Medicine News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins