Featured Research

from universities, journals, and other organizations

Promising new approach in therapy of pain

Date:
December 3, 2012
Source:
Charité - Universitätsmedizin Berlin
Summary:
The treatment of inflammatory pain can be improved by endogenous opioid peptides acting directly in injured tissue. Scientists have shown that pain can be successfully treated by targeting immune and nerve cells outside the brain or spinal cord.

The treatment of inflammatory pain can be improved by endogenous opioid peptides acting directly in injured tissue. Scientists at the Charité -- Universitätsmedizin Berlin and the Université Paris Descartes showed that pain can be successfully treated by targeting immune and nerve cells outside the brain or spinal cord.

Related Articles


The study is published in the current issue of the FASEB Journal.

Inflammatory pain is the most common form of painful diseases. Examples are acute pain after surgery, and chronic pain as in the case of rheumatoid arthritis. However, the treatment of inflammatory pain is often difficult because it rarely responds to conventional therapies. Furthermore, opiates, such as morphine, produce serious side effects including addiction mediated in the brain, while drugs, such as ibuprofen, may cause stomach ulcers, internal bleeding, and cardiovascular complications. The activation of opiate receptors in nerve cells outside the brain or spinal cord can alleviate pain without serious side effects. This can be achieved by synthetic opiates or endogenous opioid peptides, e.g. enkephalins and endorphins. However, these peptides are rapidly inactivated by two major enzymes, aminopeptidase N (APN) and neutral endopeptidase (NEP), which limit their analgesic effects.

The aim of the research group of Prof. Halina Machelska-Stein from the Klinik für Anästhesiologie at Campus Benjamin Franklin was to prevent the breakdown of endogenous opioid peptides directly in the inflamed tissue. In an animal model, the group has shown that inflammatory pain can be alleviated if the two enzymes (APN and NEP), responsible for the inactivation of the opioid peptides, were blocked by the selective inhibitors. In preparations from immune or nerve cells, which express these enzymes, the opioid peptides were quickly broken down. This was prevented by the enzyme inhibitors, bestatin, thiorpan and P8B. As a result, the sensation of pain was either markedly reduced or completely disappeared.

"Targeting of endogenous opioid peptides directly in injured tissues might be a promising strategy to treat inflammatory pain without serious side effects," states Prof. Machelska-Stein, explaining the results of the investigation. Furthermore, blocking pain at the site of its origin may prevent excitatory mechanisms in the nervous system, which lead to the development of chronic pain.


Story Source:

The above story is based on materials provided by Charité - Universitätsmedizin Berlin. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Schreiter, C. Gore, D. Labuz, M.-C. Fournie-Zaluski, B. P. Roques, C. Stein, H. Machelska. Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue. The FASEB Journal, 2012; 26 (12): 5161 DOI: 10.1096/fj.12-208678

Cite This Page:

Charité - Universitätsmedizin Berlin. "Promising new approach in therapy of pain." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203082058.htm>.
Charité - Universitätsmedizin Berlin. (2012, December 3). Promising new approach in therapy of pain. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/12/121203082058.htm
Charité - Universitätsmedizin Berlin. "Promising new approach in therapy of pain." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203082058.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins