Featured Research

from universities, journals, and other organizations

Steps towards filming atoms dancing

Date:
December 3, 2012
Source:
Elhuyar Fundazioa
Summary:
With their ultra short X-ray flashes, free-electron lasers offer the opportunity to film atoms in motion in complicated molecules and in the course of chemical reactions. However, for monitoring this motion, the arrival time and the temporal profile of the pulses which periodically illuminate the system, must be precisely known. An international team of scientists has now developed a measurement technique that provides complete temporal characterization of individual FEL (free-electron laser) pulses at DESY's soft-X-ray free-electron laser, named FLASH.

An electromagnetic field accelerates photoelectrons emitted from neon atoms irradiated by an X-ray free-electron laser. In this way, the X-ray pulse temporal profile and arrival time are uniquely retrieved on a pulse to-pulse basis with femtosecond precision.
Credit: Jφrg Harms/MPSD at CFEL

With their ultra short X-ray flashes, free-electron lasers offer the opportunity to film atoms in motion in complicated molecules and in the course of chemical reactions. However, for monitoring this motion, the arrival time and the temporal profile of the pulses which periodically illuminate the system, must be precisely known. An international team of scientists has now developed a measurement technique that provides complete temporal characterization of individual FEL (free-electron laser) pulses at DESY's soft-X-ray free-electron laser, named FLASH.

The team, led by Adrian Cavalieri from the Center for Free-Electron Laser Science (CFEL) in Hamburg, was able to measure the temporal profile of each X-ray pulse with femtosecond precision (a femtosecond is a quadrillionth of a second). The Ikerbasque Research Professor Andrey Kazansky from Donostia International Physics Center (DIPC) and the University of the Basque Country (UPV/EHU), as well as Nikolay Kabachnik from the Lomonosov State University in Moscow who is a regular visiting fellow at DIPC, were members of the team. The technique developed in this investigation can be implemented at any of the world΄s X-ray free-electron lasers, ultimately allowing for most effective utilization of these sources.

The results are published in the current issue of the journal Nature Photonics.

X-ray pulses delivered by free-electron lasers provide unique research opportunities, because the pulses are ultra-intense and ultra-short. At FELs trillions of X-ray photons are packed within a single burst -- or pulse -- which lasts for only several tens of femtoseconds, or even less. However, the precise arrival time and even the temporal profile of the FEL pulse can change dramatically from one pulse to the next. Therefore, to use the FEL to "film" ultrafast dynamical processes, the arrival time of each pulse must be measured to reorder the individual frames or snapshots captured with each individual FEL pulse.

Provided with accurate timing information, femtosecond FEL X-ray pulses are short enough to study atoms in motion, chemical reactions, and phase transitions in materials with time resolution on the femtosecond scale.

With simultaneous measurement of the FEL X-ray pulse profile, it will be possible to go even further, to explore processes that evolve within the X-ray exposure. On these timescales the motion of electrons and electronic state dynamics become significant. Electronic dynamics drive damage processes in biomolecules, which may destroy them before they can be recorded in a crystal clear image.

For their measurements, the team adapted a technique used in attosecond science called "photoelectron streaking" (an attosecond is a thousandth of a femtosecond). Andrey Kazansky, Ikerbasque research Professor at DIPC and UPV/EHU, explains that "the streaking technique permits recording temporal profiles of varying light signals by creating photoelectron bursts and measuring the energy distribution of these electrons." A photoelectron is the electron emitted from matter (gas, solid, liquids) as a consequence of the absorption of a high energy photon. In other words, is the electron that has been kicked out by a photon.

By taking advantage of the ultra-high intensities available at FELs the researchers were able to perform the streaking measurement on a single-shot basis at FLASH. For this, the X-ray flashes were shot through neon gas on their way to their target. Each X-ray pulse ejects a burst of photoelectrons from the noble gas and it turns out that the temporal profile of the photoelectron bursts is a replica of the FEL pulse that ejected them.

Then, a very intense electromagnetic field is used to accelerate or decelerate the photoelectrons, depending on the exact instant of their ejection. The strength of this effect is measured and combining all the information appropriately the temporal profile and arrival time of the individual X-ray pulses from FEL can be obtained with a precision of about 5 femtoseconds.

"Simultaneous measurement of the arrival time and pulse profile, independent of all other FEL parameters, is the key to this technique," explains Adrian Cavalieri, who is a professor at the University of Hamburg and a group leader in the Max Planck Research Department for Structural Dynamics (MPSD). Until now, no other measurement has provided this complete timing information -- yet it is exactly this information that will be crucial for future application of these extremely perspective X-ray light sources.

The FEL pulse characterization measurements presented by the team are made without affecting the FEL beam -- only a negligible number of photons is lost for creating photoelectrons. Therefore, they can be applied in any experiment at almost any wavelength. In the immediate future, laser-driven streaking will be used to monitor and maintain the FEL pulse duration at FLASH to study a wide variety of atomic, molecular and solid-state systems. For further experiments, the researchers plan to use these high precision measurements as critical feedback for tailoring and manipulating the X-ray pulse profile.


Story Source:

The above story is based on materials provided by Elhuyar Fundazioa. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Grguraš, A. R. Maier, C. Behrens, T. Mazza, T. J. Kelly, P. Radcliffe, S. Dόsterer, A. K. Kazansky, N. M. Kabachnik, Th. Tschentscher, J. T. Costello, M. Meyer, M. C. Hoffmann, H. Schlarb, A. L. Cavalieri. Ultrafast X-ray pulse characterization at free-electron lasers. Nature Photonics, 2012; 6 (12): 852 DOI: 10.1038/NPHOTON.2012.276

Cite This Page:

Elhuyar Fundazioa. "Steps towards filming atoms dancing." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203121530.htm>.
Elhuyar Fundazioa. (2012, December 3). Steps towards filming atoms dancing. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/12/121203121530.htm
Elhuyar Fundazioa. "Steps towards filming atoms dancing." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203121530.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins