Featured Research

from universities, journals, and other organizations

Improving the development of new cancer models using an advanced biomedical imaging method

Date:
December 17, 2012
Source:
Society for Experimental Biology and Medicine
Summary:
Scientists have demonstrated that an advanced magnetic resonance imaging method can non-invasively evaluate the cellular proliferation of tumor models of breast cancer. This quantitative imaging method evaluates the diffusion of water in tumor tissue, which correlates with the growth rates of the tumor models. The results can contribute to the development of new tumor models for cancer research.

Scientists at the University of Arizona Cancer Center and the Moffitt Cancer Center, led by Dr. Robert Gillies, have demonstrated that an advanced magnetic resonance imaging (MRI) method can non-invasively evaluate the cellular proliferation of tumor models of breast cancer. This quantitative imaging method evaluates the diffusion of water in tumor tissue, which correlates with the growth rates of the tumor models.

Related Articles


The results, which appear in the November 2012 issue of Experimental Biology and Medicine, can contribute to the development of new tumor models for cancer research.

"In the absence of imaging such as we describe here, developers of tumor models are flying blind" says Dr. Gillies. "In this study, we show that the behavior of water in tissues can provide important information about tumor development. More specifically, the mobility of water is inhibited by biological barriers such as cell membranes, so that decreased mobility can be used as a measure of cell density and proliferation in tumor models."

The development of new tumor models is a high priority for current cancer research. Yet creating new pre-clinical tumor models from cancer cells obtained from patients is a laborious process with a low potential for success. Dr. Marty Pagel, co-investigator on the study states that "noninvasive, quantitative imaging techniques have potential to accelerate and improve the success of establishing new tumor models for innovative cancer studies."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "This exciting study by Gillies and colleagues demonstrates that a Diffusion Weighted MRI technique provides a quantitative measure of tumor development in models of breast cancer. Such a non-invasive method will allow for the development of new tumor models that can be used for the development of improved therapies for breast cancer."


Story Source:

The above story is based on materials provided by Society for Experimental Biology and Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Renu M Stephen, Mark D Pagel, Kathy Brown, Amanda F Baker, Emmanuelle J Meuillet, and Robert J Gillies. Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging. Experimental Biology and Medicine November, 2012; 237: 1273-1280 DOI: 10.1258/ebm.2012.011326

Cite This Page:

Society for Experimental Biology and Medicine. "Improving the development of new cancer models using an advanced biomedical imaging method." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217121613.htm>.
Society for Experimental Biology and Medicine. (2012, December 17). Improving the development of new cancer models using an advanced biomedical imaging method. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/12/121217121613.htm
Society for Experimental Biology and Medicine. "Improving the development of new cancer models using an advanced biomedical imaging method." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217121613.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins