Featured Research

from universities, journals, and other organizations

Steering stem cells to become two different building blocks for new blood vessels

Date:
December 20, 2012
Source:
Johns Hopkins
Summary:
Growing new blood vessels in the lab is a tough challenge, but an engineering team has solved a major stumbling block: how to prod stem cells to become two different types of tissue that are needed to build tiny networks of veins and arteries.

The research team was able to create from stem cells two types of smooth muscle cells needed to grow new blood vessels.
Credit: Illustration by Maureen Wanjare

Growing new blood vessels in the lab is a tough challenge, but a Johns Hopkins engineering team has solved a major stumbling block: how to prod stem cells to become two different types of tissue that are needed to build tiny networks of veins and arteries.

The team's solution is detailed in an article appearing in the January 2013 print edition of the journal Cardiovascular Research. The article also was published recently in the journal's online edition. The work is important because networks of new blood vessels, assembled in the lab for transplanting into patients, could be a boon to people whose circulatory systems have been damaged by heart disease, diabetes and other illnesses.

"That's our long-term goal: to give doctors a new tool to treat patients who have problems in the pipelines that carry blood through their bodies," said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who led the research team. "Finding out how to steer these stem cells into becoming critical building blocks to make these blood vessel networks is an important step."

In the new research paper, the Gerecht team focused on vascular smooth muscle cells, which are found within the walls of blood vessels. Two types have been identified: synthetic smooth muscle cells, which migrate through the surrounding tissue, continue to divide and help support the newly formed blood vessels; and contractile smooth muscles cells, which remain in place, stabilize the growth of new blood vessels and help them maintain proper blood pressure.

To produce these smooth muscle cells, Gerecht's lab has been experimenting with both National Institutes of Health-approved human embryonic stem cells and induced pluripotent stem cells. The induced pluripotent stem cells are adult cells that have been genetically reprogrammed to act like embryonic stem cells. Stem cells are used in this research because they possess the potential to transform into specific types of cells needed by particular organs within the body.

In an earlier study supervised by Gerecht, her team was able to coax stem cells to become a type of tissue that resembled smooth muscle cells but didn't quite behave properly. In the new experiments, the researchers tried adding various concentrations of growth factor and serum to the previous cells. Growth factor is the "food' that the cells consume; serum is a liquid component that contains blood cells.

"When we added more of the growth factor and serum, the stem cells turned into synthetic smooth muscle cells," Gerecht said. "When we provided a much smaller amount of these materials, they became contractile smooth muscles cells."

This ability to control the type of smooth muscle cells formed in the lab could be critical in developing new blood vessel networks, she said. "When we're building a pipeline to carry blood, you need the contractile cells to provide structure and stability," she added. "But in working with very small blood vessels, the migrating synthetic cells can be more useful."

In cancer, small blood vessels are formed to nourish the growing tumor. The current work could also help researchers understand how blood vessels are stabilized in tumors, which could be useful in the treatment of cancer.

"We still have a lot more research to do before we can build complete new blood vessel networks in the lab," Gerecht said, "but our progress in controlling the fate of these stem cells appears to be a big step in the right direction."

In addition to her faculty appointment with Johns Hopkins' Whiting School of Engineering, Gerecht is affiliated with the university's Institute for NanoBioTechnolgy (INBT) and the Johns Hopkins Engineering in Oncology Center.

The lead author of the new Cardiovascular Research paper is Maureen Wanjare, a doctoral student in Gerecht's lab who is supported both by the INBT, through a National Science Foundation Integrative Graduate Education and Research Traineeship, and by the NIH. Coauthors of the study are Gerecht and Frederick Kuo, who participated in the research as an undergraduate majoring in chemical and biomolecular engineering. The human induced pluripotent stem cells used in the study were provided by Linzhao Cheng, a hematology professor in the Johns Hopkins School of Medicine.

This research was supported by an American Heart Association Scientist Development Grant and NIH grant R01HL107938.


Story Source:

The above story is based on materials provided by Johns Hopkins. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Wanjare, F. Kuo, S. Gerecht. Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovascular Research, 2012; DOI: 10.1093/cvr/cvs315

Cite This Page:

Johns Hopkins. "Steering stem cells to become two different building blocks for new blood vessels." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220143127.htm>.
Johns Hopkins. (2012, December 20). Steering stem cells to become two different building blocks for new blood vessels. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2012/12/121220143127.htm
Johns Hopkins. "Steering stem cells to become two different building blocks for new blood vessels." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220143127.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins