Featured Research

from universities, journals, and other organizations

Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism

Date:
December 20, 2012
Source:
The Korea Advanced Institute of Science and Technology (KAIST)
Summary:
Scientists have applied a systems metabolic engineering approach to develop recombinant Escherichia coli for the production of 5-aminovaleric acid and glutaric acid, the promising C5 platform chemicals, by fermentation.

We use many different types of chemicals and plastics for the convenience of our everyday life. The current sources of these materials are provided from petrochemical industry, using fossil oil as a raw material. Due to our increased concerns on the environmental problems and fossil resource availability, there has been much interest in producing those chemicals and materials from renewable non-food biomass through biorefineries.

Related Articles


For the development of biorefinery process, microorganisms have successfully been employed as the key biocatalysts to produce a wide range of chemicals, plastics, and fuels from renewable resources. However, the natural microorganisms without modification are not suitable for the efficient production of target products at industrial scale due to their poor metabolic performance. Thus, metabolic capacities of microorganisms have been improved to efficiently produce desired products, the performance of which is suitable for industrial production of such products. Optimization of microorganism for the efficient production of target bioproducts has been achieved by systems metabolic engineering, which allows metabolic engineering at the systems-level.

5-aminovalic acid (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and can potentially be used as a C5 platform chemical for synthesizing 5-hydroxyvaleric acid, glutaric acid, and 1,5-pentanediol. It has been reported that a small amount of 5AVA is accumulated in Pseudomonas putida that has impaired L-lysine catabolism since 5AVA is a natural metabolite of L-lysine catabolism in P. putida. However, direct fermentative production of 5AVA has not yet been demonstrated, which might have great potential to open market for C5 chemicals and plastics.

In the paper published in Metabolic Engineering, a Korean research team led by Distinguished Professor Sang Yup Lee at the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), a premier science and engineering university in Korea, together with Dr. Seung Hwan Lee at Korea Research Institute of Chemical Technology (KRICT), a government supported research institute in Korea, and Prof. Si Jae Park at Myongji University in Korea, applied systems metabolic engineering approach to develop recombinant Escherichia coli for the production of 5-aminovaleric acid and glutaric acid, the promising C5 platform chemicals, by fermentation.

Firstly, they constructed metabolic pathway to produce 5-aminovaleric acid (5AVA) using L-lysine as a direct precursor by employing two enzymes lysine 2-monooxygenase (DavB) and delta-aminovaleramidase (DavA). Secondly, metabolic pathway for the further conversion of 5AVA into glutaric acid was constructed by employing two more enzymes 5AVA aminotransferase (GabT) and glutarate semialdehyde dehydrogenase (GabD). Recombinant E. coli expressing DavB and DavA produced 5AVA using L-lysine as a direct precursor, and recombinant E. coli expressing DavB, DavA, GabT, and GabD produced glutaric acid from L-lysine. Finally, the L-lysine biosynthetic pathway of E. coli was systematically engineered to produce 5AVA from glucose. As a proof-of-concept demonstration, fermentation of this metabolically engineered E. coli strain successfully produced 5AVA from glucose. This study showcases the first microbial process for the production of 5AVA and glutatic acid as C5 platform chemicals by developing microbial strain through systems metabolic engineering.


Story Source:

The above story is based on materials provided by The Korea Advanced Institute of Science and Technology (KAIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Si Jae Park, Eun Young Kim, Won Noh, Hye Min Park, Young Hoon Oh, Seung Hwan Lee, Bong Keun Song, Jonggeon Jegal, Sang Yup Lee. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, 2012; DOI: 10.1016/j.ymben.2012.11.011

Cite This Page:

The Korea Advanced Institute of Science and Technology (KAIST). "Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220143750.htm>.
The Korea Advanced Institute of Science and Technology (KAIST). (2012, December 20). Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/12/121220143750.htm
The Korea Advanced Institute of Science and Technology (KAIST). "Production of 5-aminovaleric and glutaric acid by metabolically engineered microorganism." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220143750.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins