Featured Research

from universities, journals, and other organizations

Nanotechnology: Spotting a molecular mix-up

Date:
December 20, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Information within the bonds of molecules known as super benzene oligomers pave the way for new types of quantum computers.

Information within the bonds of molecules known as super benzene oligomers pave the way for new types of quantum computers.

Scanning tunneling microscopy (STM) is routinely employed by physicists and chemists to capture atomic-scale images of molecules on surfaces. Now, an international team led by Christian Joachim and co-workers from the A*STAR Institute of Materials Research and Engineering has taken STM a step further: using it to identify the quantum states within 'super benzene' compounds using STM conductance measurements1. Their results provide a roadmap for developing new types of quantum computers based on information localized inside molecular bonds.

To gain access to the quantum states of hexabenzocoronene (HBC) -- a flat aromatic molecule made of interlocked benzene rings -- the researchers deposited it onto a gold substrate. According to team member We-Hyo Soe, the weak electronic interaction between HBC and gold is crucial to measuring the system's 'differential conductance' -- an instantaneous rate of current charge with voltage that can be directly linked to electron densities within certain quantum states.

After cooling to near-absolute zero temperatures, the team maneuvered its STM tip to a fixed location above the HBC target. Then, they scanned for differential conductance resonance signals at particular voltages. After detecting these voltages, they mapped out the electron density around the entire HBC framework using STM. This technique provided real-space pictures of the compound's molecular orbitals -- quantized states that control chemical bonding.

When Joachim and co-workers tried mapping a molecule containing two HBC units, a dimer, they noticed something puzzling. They detected two quantum states from STM measurements taken near the dimer's middle, but only one state when they moved the STM tip to the dimer's edge (see image). To understand why, the researchers collaborated with theoreticians who used high-level quantum mechanics calculations to identify which molecular orbitals best reproduced the experimental maps.

Traditional theory suggests that STM differential conductance signals can be assigned to single, unique molecular orbitals. The researchers' calculations, however, show that this view is flawed. Instead, they found that observed quantum states contained mixtures of several molecular orbitals, with the exact ratio dependent upon the position of the ultra-sharp STM tip.

Soe notes that these findings could have a big impact in the field of quantum computing. "Each measured resonance corresponds to a quantum state of the system, and can be used to transfer information through a simple energy shift. This operation could also fulfill some logic functions." However, he adds that advanced, many-body theories will be necessary to identify the exact composition and nature of molecular orbitals due to the location-dependent tip effect.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. We-Hyo Soe, Hon Seng Wong, Carlos Manzano, Maricarmen Grisolia, Mohamed Hliwa, Xinliang Feng, Klaus Mόllen, Christian Joachim. Mapping the Excited States of Single Hexa-peri-benzocoronene Oligomers. ACS Nano, 2012; 6 (4): 3230 DOI: 10.1021/nn300110k

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Nanotechnology: Spotting a molecular mix-up." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220153123.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, December 20). Nanotechnology: Spotting a molecular mix-up. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/12/121220153123.htm
The Agency for Science, Technology and Research (A*STAR). "Nanotechnology: Spotting a molecular mix-up." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220153123.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins