Featured Research

from universities, journals, and other organizations

Biggest structure in universe: Large quasar group is 4 billion light years across

Date:
January 11, 2013
Source:
Royal Astronomical Society (RAS)
Summary:
Astronomers have found the largest known structure in the universe. The large quasar group (LQG) is so large that it would take a vehicle traveling at the speed of light some 4 billion years to cross it. Quasars are the nuclei of galaxies from the early days of the universe that undergo brief periods of extremely high brightness that make them visible across huge distances. These periods are ‘brief’ in astrophysics terms but actually last 10-100 million years.

The coloured background indicates the peaks and troughs in the occurrence of quasars at the distance of the LQG. Darker colours indicate more quasars, lighter colours indicate fewer quasars. The LQG is clearly seen as a long chain of peaks indicated by black circles. (The red crosses mark the positions of quasars in a different and smaller LQG). The horizontal and vertical axes represent right ascension and declination, the celestial equivalent of longitude and latitude. The map covers around 29.4 by 24 degrees on the sky, indicating the huge scale of the newly discovered structure.
Credit: R. G. Clowes / UCLan

An international team of astronomers, led by academics from the University of Central Lancashire (UCLan), has found the largest known structure in the universe. The large quasar group (LQG) is so large that it would take a vehicle travelling at the speed of light some 4 billion years to cross it.

The team publish their results in the journal Monthly Notices of the Royal Astronomical Society.

Quasars are the nuclei of galaxies from the early days of the universe that undergo brief periods of extremely high brightness that make them visible across huge distances. These periods are 'brief' in astrophysics terms but actually last 10-100 million years.

Since 1982 it has been known that quasars tend to group together in clumps or 'structures' of surprisingly large sizes, forming large quasar groups or LQGs.

The team, led by Dr Roger Clowes from UCLan's Jeremiah Horrocks Institute, has identified the LQG which is so significant in size it also challenges the Cosmological Principle: the assumption that the universe, when viewed at a sufficiently large scale, looks the same no matter where you are observing it from.

The modern theory of cosmology is based on the work of Albert Einstein, and depends on the assumption of the Cosmological Principle. The Principle is assumed but has never been demonstrated observationally 'beyond reasonable doubt'.

To give some sense of scale, our galaxy, the Milky Way, is separated from its nearest neighbour, the Andromeda Galaxy, by about 0.75 Megaparsecs (Mpc) or 2.5 million light-years.

Whole clusters of galaxies can be 2-3 Mpc across but LQGs can be 200 Mpc or more across. Based on the Cosmological Principle and the modern theory of cosmology, calculations suggest that astrophysicists should not be able to find a structure larger than 370 Mpc.

Dr Clowes' newly discovered LQG however has a typical dimension of 500 Mpc. But because it is elongated, its longest dimension is 1200 Mpc (or 4 billion light years) -- some 1600 times larger than the distance from the Milky Way to Andromeda.

Dr Clowes said: "While it is difficult to fathom the scale of this LQG, we can say quite definitely it is the largest structure ever seen in the entire universe. This is hugely exciting -- not least because it runs counter to our current understanding of the scale of the universe.

'Even travelling at the speed of light, it would take 4 billion ... years to cross. This is significant not just because of its size but also because it challenges the Cosmological Principle, which has been widely accepted since Einstein. Our team has been looking at similar cases which add further weight to this challenge and we will be continuing to investigate these fascinating phenomena."


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Journal Reference:

  1. Roger G. Clowes, Kathryn A. Harris, Srinivasan Raghunathan, Luis E. Campusano, Ilona K. Sφchting And Matthew J. Graham. A structure in the early Universe at z ∼ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology. Monthly Notices of the Royal Astronomical Society, January 11, 2013 DOI: 10.1093/mnras/sts497

Cite This Page:

Royal Astronomical Society (RAS). "Biggest structure in universe: Large quasar group is 4 billion light years across." ScienceDaily. ScienceDaily, 11 January 2013. <www.sciencedaily.com/releases/2013/01/130111092539.htm>.
Royal Astronomical Society (RAS). (2013, January 11). Biggest structure in universe: Large quasar group is 4 billion light years across. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/01/130111092539.htm
Royal Astronomical Society (RAS). "Biggest structure in universe: Large quasar group is 4 billion light years across." ScienceDaily. www.sciencedaily.com/releases/2013/01/130111092539.htm (accessed September 30, 2014).

Share This



More Space & Time News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) — Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com
Raw: US-Russian Crew Lifts Off for Space Station

Raw: US-Russian Crew Lifts Off for Space Station

AP (Sep. 25, 2014) — A U.S.-Russian space crew has blasted off successfully for the International Space Station. The Russian Soyuz-TMA14M spacecraft lifted off from the Russian-leased Baikonur launch facility in Kazakhstan. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins