Featured Research

from universities, journals, and other organizations

Cancer suppressor gene links metabolism with cellular aging

Date:
January 13, 2013
Source:
University of Pennsylvania School of Medicine
Summary:
The tumor suppressor protein p53 is an attractive target for drug developers. But this path has so far proven difficult, as most p53 regulatory proteins operate via protein-protein interactions, which make for poor drug targets, as opposed to ones based on enzymes. Now, researchers have identified a class of p53 target genes and regulatory molecules that represent more promising therapeutic candidates.

It is perhaps impossible to overstate the importance of the tumor suppressor gene p53. It is the single most frequently mutated gene in human tumors. p53 keeps pre-cancerous cells in check by causing cells, among other things, to become senescent -- aging at the cellular level. Loss of p53 causes cells to ignore the cellular signals that would normally make mutant or damaged cells die or stop growing.

In short, the p53 pathway is an obvious and attractive target for drug developers. But that strategy has so far proven difficult, as most p53 regulatory proteins operate via protein-protein interactions, which make for poor drug targets, as opposed to ones based on enzymes.

Now, a team of researchers from the Perelman School of Medicine, University of Pennsylvania, has identified a class of p53 target genes and regulatory molecules that represent more promising therapeutic candidates.

As Xiaolu Yang, PhD, professor of Cancer Biology and investigator in Penn's Abramson Family Cancer Research Institute, and his team describe in an advance online Nature publication, p53 participates in a molecular feedback circuit with malic enzymes, thereby showing that p53 activity is also involved in regulating metabolism.(The Yang lab identified p53's role in glucose metabolism in the past.)

The new findings, Yang says, suggest that p53 acts as a molecular sensor of metabolic stress and explains how metabolic stress can lead to senescence in cells.

"We uncovered an important regulatory mechanism for p53 as well as an effector mechanism for p53," Yang says.

Significantly, the findings also identify malic enzymes as novel and potentially useful pharmaceutical targets for anticancer therapy, as well as possible mediators of the normal aging process -- though neither possibility was actually addressed in the current study.

As cells become damaged and precancerous, the p53 protein prevents those cells from continuing towards becoming tumors by causing the cells to senesce. Metabolic cues also regulate senescence, but the molecular relays coupling those two processes -- senescence and metabolism -- remained unknown.

Yang and his team decided to test if a pair of enzymes, malic enzyme 1 and malic enzyme 2 (ME1 and ME2), could be involved. Malic enzymes recycle malate -- an intermediate molecule -- back into an end-product of glycolysis -- pyruvate -- storing energy in the process. Malic enzymes are important for adjusting metabolic flux to suit proliferating cells' demands for energy and biosynthesis. Thus, these two enzymes are attuned to the energy and proliferative state of the cell.

Yang's team found that p53 inhibits malic enzyme expression, such that loss of p53 causes malic enzyme abundance to increase. Conversely, malic enzymes keep p53 in check; loss of malic enzymes ramps up p53 activation and induces senescence via either downregulation of a p53 inhibitor (Mdm2) or production of oxygen radicals. Overexpression of malic enzymes inhibits senescence.

The result, Yang explains, is a "feed-forward loop" in which activation of p53 suppresses malic enzyme expression, reducing malic enzyme levels and further upregulating p53, leading to senescence. On the other hand, upregulation of malic enzymes inhibits p53. p53 inhibition loosens the protein's grip on malic enzyme expression, allowing malic enzyme levels to rise.

"This is a circuit," he says. "Going around this loop, you get pretty robust activation."

These same results played out in animal models described in the Nature study. Loss of either ME1 or ME2 reduced tumor weight, even with p53-null tumor cells, which suggests an additional, p53-independent function of malic enzymes.And, overexpression of malic enzymes led to more substantial tumors.

According to Yang, the study pegs malic enzymes as molecular players linking senescence and metabolic state. Those enzymes could potentially serve as anticancer drug targets, he says. But equally important, they may also play a role in the normal process of cellular aging.

"Senescence is aging at the cellular level," says Yang, who notes that considerable research has demonstrated a correlation between caloric restriction and lifespan. "We may have identified a good starting point to understand how aging works."


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peng Jiang, Wenjing Du, Anthony Mancuso, Kathryn E. Wellen & Xiaolu Yang. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature, 2013 DOI: 10.1038/nature11776

Cite This Page:

University of Pennsylvania School of Medicine. "Cancer suppressor gene links metabolism with cellular aging." ScienceDaily. ScienceDaily, 13 January 2013. <www.sciencedaily.com/releases/2013/01/130113144917.htm>.
University of Pennsylvania School of Medicine. (2013, January 13). Cancer suppressor gene links metabolism with cellular aging. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/01/130113144917.htm
University of Pennsylvania School of Medicine. "Cancer suppressor gene links metabolism with cellular aging." ScienceDaily. www.sciencedaily.com/releases/2013/01/130113144917.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins