Featured Research

from universities, journals, and other organizations

New information on binding gold particles over metal oxide surfaces

Date:
January 22, 2013
Source:
Academy of Finland
Summary:
The strong binding of gold on electronically modified calcium oxide can now be understood in detail. In a computational study, researchers have shown how redox chemistry entirely determines the adsorption strength of gold on the modified oxide where one metal atom is replaced with molybdenum.

This is a visualization of an atomic structure of the studied system where a negatively charged (charge -1) gold adatom is adsorbed on molybdemun-doped calcium oxide. The molebdenum dopant has an oxidation state of +3. The adsorption energy consists of ionocovalent, redox and Coulombic contributions. Yellow: gold; green: molybdenum; blue: calcium; red: oxygen.
Credit: Karoliina Honkala

The strong binding of gold on electronically modified calcium oxide can now be understood in detail. In a computational study, researchers Jenni Andersin, Janne Nevalaita, Karoliina Honkala and Hannu Häkkinen at the University of Jyväskylä Nanoscience Center have shown how redox chemistry entirely determines the adsorption strength of gold on the modified oxide where one metal atom is replaced with molybdenum.

Related Articles


The research team applied the so-called Born-Haber cycle to analyse how different terms contribute to adsorption energy. The calculations were done at the supercomputers of the CSC -- IT Center of Science by employing quantum mechanical simulation methods.

In the oxide lattice, the molybdenum atom donates two electrons into the oxide. When a gold atom adsorbs on the oxide surface, a redox reaction takes place. In this process, a third electron transferred by the dopant is gained by gold, and energy is released. By varying the dopant among several transition metal atoms, the researchers found that the amount of energy released linearly correlates with the ability of the dopant to give an electron. The trend can be used to estimate how much a guest atom stabilises gold adsorption without calculating the adsorption energy.

The research results are important for understanding catalyst-support interaction. The results fully support the experimental observation where gold nanoparticles have been seen to form flat structures over modified calcium oxide surfaces. A similar Born-Haber cycle, as applied in this study, can also be employed to analyse oxide-catalysed chemical reactions that follow the redox mechanism.

Catalysts are commonly used by industry, for instance, in the production of fuels, plastics, fertilisers and other similar products. Metal oxide surfaces are widely used as support materials for metal catalysts particles. The binding properties and shape of metal nanoparticles sensitively depend on the interaction between the support and the catalyst. By tuning this interaction, it is possible to affect the number and properties of catalytically active sites, or even create new sites. One way to modify the interaction is to dope the oxide with guest metal atoms that can donate extra electrons into a material.

The study was funded by the Academy of Finland.


Story Source:

The above story is based on materials provided by Academy of Finland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jenni Andersin, Janne Nevalaita, Karoliina Honkala, Hannu Häkkinen. The Redox Chemistry of Gold with High-Valence Doped Calcium Oxide. Angewandte Chemie International Edition, 2012; DOI: 10.1002/anie.201208443

Cite This Page:

Academy of Finland. "New information on binding gold particles over metal oxide surfaces." ScienceDaily. ScienceDaily, 22 January 2013. <www.sciencedaily.com/releases/2013/01/130122101443.htm>.
Academy of Finland. (2013, January 22). New information on binding gold particles over metal oxide surfaces. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/01/130122101443.htm
Academy of Finland. "New information on binding gold particles over metal oxide surfaces." ScienceDaily. www.sciencedaily.com/releases/2013/01/130122101443.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins