Featured Research

from universities, journals, and other organizations

The storm that never was: Why meteorologists are often wrong

Date:
January 24, 2013
Source:
Brigham Young University
Summary:
Have you ever woken up to a sunny forecast only to get soaked on your way to the office? On days like that it's easy to blame the weatherman. But engineering professor Julie Crockett doesn't get mad at meteorologists. She understands something that very few people know: it's not the weatherman's fault he's wrong so often.

BYU engineering professor Julie Crockett studies waves in the ocean and the atmosphere.
Credit: Image courtesy of Brigham Young University

Have you ever woken up to a sunny forecast only to get soaked on your way to the office? On days like that it's easy to blame the weatherman.

But BYU mechanical engineering professor Julie Crockett doesn't get mad at meteorologists. She understands something that very few people know: it's not the weatherman's fault he's wrong so often.

According to Crockett, forecasters make mistakes because the models they use for predicting weather can't accurately track highly influential elements called internal waves.

Atmospheric internal waves are waves that propagate between layers of low-density and high-density air. Although hard to describe, almost everyone has seen or felt these waves. Cloud patterns made up of repeating lines are the result of internal waves, and airplane turbulence happens when internal waves run into each other and break.

"Internal waves are difficult to capture and quantify as they propagate, deposit energy and move energy around," Crockett said. "When forecasters don't account for them on a small scale, then the large scale picture becomes a little bit off, and sometimes being just a bit off is enough to be completely wrong about the weather."

One such example may have happened in 2011, when Utah meteorologists predicted an enormous winter storm prior to Thanksgiving. Schools across the state cancelled classes and sent people home early to avoid the storm. Though it's impossible to say for sure, internal waves may have been driving stronger circulations, breaking up the storm and causing it to never materialize.

"When internal waves deposit their energy it can force the wind faster or slow the wind down such that it can enhance large scale weather patterns or extreme kinds of events," Crockett said. "We are trying to get a better feel for where that wave energy is going."

Internal waves also exist in oceans between layers of low-density and high-density water. These waves, often visible from space, affect the general circulation of the ocean and phenomena like the Gulf Stream and Jet Stream.

Both oceanic and atmospheric internal waves carry a significant amount of energy that can alter climates.

Crockett's latest wave research, which appears in a recent issue of the International Journal of Geophysics, details how the relationship between large-scale and small-scale internal waves influences the altitude where wave energy is ultimately deposited.

To track wave energy, Crockett and her students generate waves in a tank in her lab and study every aspect of their behavior. She and her colleagues are trying to pinpoint exactly how climate changes affect waves and how those waves then affect weather.

Based on this, Crockett can then develop a better linear wave model with both 3D and 2D modeling that will allow forecasters to improve their weather forecasting.

"Understanding how waves move energy around is very important to large scale climate events," Crockett said. "Our research is very important to this problem, but it hasn't solved it completely."


Story Source:

The above story is based on materials provided by Brigham Young University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Casaday, J. Crockett. Investigation of High-Frequency Internal Wave Interactions with an Enveloped Inertia Wave. International Journal of Geophysics, 2012; 2012: 1 DOI: 10.1155/2012/863792

Cite This Page:

Brigham Young University. "The storm that never was: Why meteorologists are often wrong." ScienceDaily. ScienceDaily, 24 January 2013. <www.sciencedaily.com/releases/2013/01/130124140722.htm>.
Brigham Young University. (2013, January 24). The storm that never was: Why meteorologists are often wrong. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2013/01/130124140722.htm
Brigham Young University. "The storm that never was: Why meteorologists are often wrong." ScienceDaily. www.sciencedaily.com/releases/2013/01/130124140722.htm (accessed September 3, 2014).

Share This



More Earth & Climate News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands of Fish Dead in Mexico Lake

Raw: Thousands of Fish Dead in Mexico Lake

AP (Sep. 2, 2014) — Over 53 tons of rotting fish have been removed from Lake Cajititlan in western Jalisco state. Authorities say that the thousands of fish did not die of natural causes. (Sep. 2) Video provided by AP
Powered by NewsLook.com
Raw: Iceland Volcano Spewing Smoke

Raw: Iceland Volcano Spewing Smoke

AP (Sep. 2, 2014) — The alert warning for the area surrounding Iceland's Bardarbunga volcano was kept at orange on Tuesday, indicating increased unrest with greater potential for an eruption. Smoke is spewing from the volcano, and lava is spouting nearby. (Sept. 2) Video provided by AP
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Halliburton Reaches $1B Gulf Spill Settlement

Halliburton Reaches $1B Gulf Spill Settlement

AP (Sep. 2, 2014) — Halliburton's agreement to pay more than $1 billion to settle numerous claims involving the 2010 BP oil spill could be a way to diminish years of costly litigation. A federal judge still has to approve the settlement. (Sept. 2) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins