Featured Research

from universities, journals, and other organizations

Mechanisms involved in resistance to bacteria Salmonella

Date:
February 6, 2013
Source:
Elhuyar Fundazioa
Summary:
Researchers have studied a specific protein type that activates the formation of biofilm in Salmonella and regulates bacterial motility.

In their natural environment bacteria develop by forming communities of micro-organisms called biofilms that afford them greater resistance.These biofilms on farms and premises where food is processed lead to considerable economic losses besides being a potential source of contamination and transmission of the pathogen. In her PhD thesis,Violeta Zorraquino-Salvo has studied a specific protein type that activates the formation of biofilm in Salmonella and regulates bacterial motility."Having a better idea of the mechanisms involved in these processes will help to design new, more effective strategies for preventing the formation of biofilm and its potential harm in the clinical, food and industrial ambit," points out the researcher.

Related Articles


Two decades ago it was discovered that a small molecule (the so-called c-di-GMP) could on its own hamper motility and activate the formation of biofilm."This molecule is part of a signal transduction system:there are different sensory membranes on the membrane of the bacteria that pick up stimuli from the outside and transduce them into different intracellular levels of c-di-GMP, thus regulating different biological processes like biofilm formation."In the first part of her thesis Zorraquino removed all the sensory proteins from the Salmonella's genome."We created a mutant Salmonella incapable of picking up stimuli from the medium in which it lives and therefore of producing biofilm under any circumstances."After that, each sensory protein was inserted one by one to be able to analyse, under different ambient conditions, how each one contributed to the formation of biofilm."We showed that under each condition tested, only some proteins are active, so each one is most likely responsible for the formation of biofilm when a given condition is present."

These results have enabled researchers to get a better idea about the mechanism by which Salmonella activates the formation of biofilm."We have generated new knowledge that could be used to design new strategies to help to prevent the formation of biofilm in our factories and on our farms," as Violeta Zorraquino pointed out.

Bacterial motility

The second part of her research focussed on studying the effect of the same molecule (c-di-GMP) in another of Salmonella's biological processes:bacterial motility.A bacterium is capable of moving freely in a liquid medium by rotating its flagella, and when it reaches a suitable surface, it sticks to it and begins to create the biofilm."There is an intervening step -- between being motile and sticking to a surface -- in which the bacterium has to stop the rotation of its flagella completely. We have discovered what is responsible for this intervening step: cellulose, which is a component of biofilm, and the synthesis of which is activated in the presence of the c-di-GMP molecule."


Story Source:

The above story is based on materials provided by Elhuyar Fundazioa. Note: Materials may be edited for content and length.


Cite This Page:

Elhuyar Fundazioa. "Mechanisms involved in resistance to bacteria Salmonella." ScienceDaily. ScienceDaily, 6 February 2013. <www.sciencedaily.com/releases/2013/02/130206093902.htm>.
Elhuyar Fundazioa. (2013, February 6). Mechanisms involved in resistance to bacteria Salmonella. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/02/130206093902.htm
Elhuyar Fundazioa. "Mechanisms involved in resistance to bacteria Salmonella." ScienceDaily. www.sciencedaily.com/releases/2013/02/130206093902.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins