Featured Research

from universities, journals, and other organizations

Nanoscopic microcavities offer newfound control in light filtering: Unique nanostructure produces novel 'plasmonic halos'

Date:
February 7, 2013
Source:
Boston College
Summary:
Researchers report developing a unique nanostructure capable of filtering visible light into "plasmonic halos" of desired color output.

Boston College researchers have constructed a unique nanostructure that exploits microcavity features to filter visible light into "plasmonic halos" of selected color output. The device could have applications in areas such as biomedical plasmonics or discrete optical filtering.
Credit: Nano Letters

Using the geometric and material properties of a unique nanostructure, Boston College researchers have uncovered a novel photonic effect where surface plasmons interact with light to form "plasmonic halos" of selectable output color. The findings appear in the journal Nano Letters.

Related Articles


The novel nanostructure proved capable of manipulating electron waves known as surface plasmon polaritons, or SPPs, which were discovered in the 1950s but of late have garnered the attention of scientists for their potential applications in fields that include waveguiding, lasing, color filtering and printing.

The team put a layer of a polymer film on a glass substrate and then dotted the surface with holes precisely defined by a process of electron beam lithography, using the BC Integrated Sciences Nanofabrication Clean Room facility. The team next applied a layer of silver, thick enough to be nontransparent to visible light. In addition to covering the thin film on top, the silver coated the contours of the holes in the film, as well as the exposed circles of the glass substrate below. The effect produced an array of silver microcavities.

When the researchers directed light from below and through the glass substrate, light "leaking" through nanoscale gaps on the perimeters of the microcavities created SPP waves on their top surfaces. At particular wavelengths of the incident light, these waves formed modes or resonances analogous to acoustic waves on a drumhead, which in turn effectively filtered the light transmitted to the far side, accounting for the "halo" appearance, said Boston College Ferris Professor of Physics Michael Naughton, who co-authored the report with Senior Research Associate Michael J. Burns and doctoral student and lead author Fan Ye. The team's research was funded by the W. M. Keck Foundation.

Central to this control effect are "step gaps" formed along the perimeter of each circle, which give the nanostructure the ability to modulate which waves of light pass through. It is within this geometry that the interaction of light upon the silver surface coating resulted in the excitation of plasmon waves, said Naughton. Examination of the SPPs by Mr. Ye using a near-field scanning optical microscope offered unique insights into the physics at work within the structure, Naughton said.

By adjusting the type of metal used to coat the structure or varying the circumferences of the microcavities, Naughton said the step-gap structure is capable of manipulating the optical properties of the device in the visible light range, giving the researchers newfound control in light filtering.

This kind of control, the team reports, could have applications in areas such as biomedical plasmonics or discrete optical filtering.


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fan Ye, Michael J. Burns, Michael J. Naughton. Plasmonic Halos—Optical Surface Plasmon Drumhead Modes. Nano Letters, 2013; 130122111344000 DOI: 10.1021/nl303955x

Cite This Page:

Boston College. "Nanoscopic microcavities offer newfound control in light filtering: Unique nanostructure produces novel 'plasmonic halos'." ScienceDaily. ScienceDaily, 7 February 2013. <www.sciencedaily.com/releases/2013/02/130207150907.htm>.
Boston College. (2013, February 7). Nanoscopic microcavities offer newfound control in light filtering: Unique nanostructure produces novel 'plasmonic halos'. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2013/02/130207150907.htm
Boston College. "Nanoscopic microcavities offer newfound control in light filtering: Unique nanostructure produces novel 'plasmonic halos'." ScienceDaily. www.sciencedaily.com/releases/2013/02/130207150907.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins