Featured Research

from universities, journals, and other organizations

Potential epigenetic mechanisms for improved cancer therapy

Date:
February 19, 2013
Source:
Boston University Medical Center
Summary:
A review article proposes a new epigenetic hypothesis linked to tumor production and novel ideas about what causes progenitor cells to develop into cancer cells.

A review article by researchers at Boston University School of Medicine (BUSM) proposes a new epigenetic hypothesis linked to tumor production and novel ideas about what causes progenitor cells to develop into cancer cells. Published in the February 2013 issue of Epigenomics, the article provides examples of how epigenetic drug treatments could be beneficial in treating cancers while also decreasing the likelihood of cancer relapse.

The article was written by researchers at the Boston University Cancer Center. Sibaji Sarkar, PhD, adjunct instructor of medicine at BUSM, is the article's corresponding author.

Cancer is a complex disease characterized by uncontrolled cell growth, division and invasion into other tissues. A 2004 review article published in Nature Medicine suggests that epigenetics, which is the phenomena whereby genetically identical cells express their genes differently resulting in different phenotypes and other factors play an important role in the formation of cancer originating from cancer stem cells.

Sarkar and colleagues propose that epigenetic processes, specifically DNA methylation, may trigger cancer progenitor cell formation from somatic cells in coordination with other cellular and environmental events. DNA methylation is a process that changes the DNA and causes genes to be silenced. In the absence of definitive proof of the existence of cancer stem cells, this hypothesis discusses a possible explanation for the formation and existence of cells that may develop into cancer. The researchers also explore why only some individuals develop cancer, despite identical genetic predispositions.

In cancer cells, the enzyme that maintains high levels of methylation in tumor suppressor genes is highly expressed, allowing uncontrolled growth. At the same time, many oncogenes, or genes with the potential to cause cancer, are activated and have lower levels of methylation. The apparent anomaly of the existence of both low and high rates of methylation could be explained with either the compartmentalization of these two processes and/or by the existence of both a methylation and demethylation system operating simultaneously at specific locations with the help of various accessory proteins.

The authors hypothesize the existence of both DNA methylating and demethylating enzymes in cells that regulate the methylation and demethylation process. Accessory proteins and/or small RNA factors could lead these enzymes to their sites of actions, resulting in some genes remaining methylated and others not methylated simultaneously within the same cellular environment. DNA sequences around the regions that are methylated and demethylated may also play role in these events. During drug treatments, the demethylating system dominates while the methylating enzyme is down-regulated, resulting in re-expression of silenced genes.

Recent studies have shown that epigenetic drug treatments prior to and with standard chemotherapy reduce the chance of cancer relapse.

"Progenitors are known to cause cancer relapse, and because epigenetic drugs can help destroy progenitor cells, these drugs could help reduce the chance of cancer relapse and improve the long-term outcomes of people with cancer," said Sarkar. "While our hypotheses are based on current knowledge, we are proposing important and exciting areas to be explored in the future."


Story Source:

The above story is based on materials provided by Boston University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sibaji Sarkar, Sarah Goldgar, Shannon Byler, Shoshana Rosenthal, Sarah Heerboth. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics, 2013; 5 (1): 87 DOI: 10.2217/epi.12.68

Cite This Page:

Boston University Medical Center. "Potential epigenetic mechanisms for improved cancer therapy." ScienceDaily. ScienceDaily, 19 February 2013. <www.sciencedaily.com/releases/2013/02/130219140720.htm>.
Boston University Medical Center. (2013, February 19). Potential epigenetic mechanisms for improved cancer therapy. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/02/130219140720.htm
Boston University Medical Center. "Potential epigenetic mechanisms for improved cancer therapy." ScienceDaily. www.sciencedaily.com/releases/2013/02/130219140720.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins