Featured Research

from universities, journals, and other organizations

Human heart tissue development slower than other mammals

Date:
February 20, 2013
Source:
University of Leeds
Summary:
The walls of the human heart are a disorganized jumble of tissue until relatively late in pregnancy, despite having the shape of a fully functioning heart, according to a pioneering study.

139 day gestation human heart image from computer model.
Credit: Image courtesy of University of Leeds

The walls of the human heart are a disorganised jumble of tissue until relatively late in pregnancy despite having the shape of a fully functioning heart, according to a pioneering study.

Related Articles


A University of Leeds-led team developing the first comprehensive model of human heart development using observations of living fetal hearts found surprising differences from existing animal models.

Although they saw four clearly defined chambers in the fetal heart from the eighth week of pregnancy, they did not find organised muscle tissue until the 20th week, much later than expected.

Developing an accurate, computerised simulation of the fetal heart is critical to understanding normal heart development in the womb and, eventually, to opening new ways of detecting and dealing with some functional abnormalities early in pregnancy.

Studies of early heart development have previously been largely based on other mammals such as mice or pigs, adult hearts and dead human samples. The Leeds-led team is using scans of healthy fetuses in the womb, including one mother who volunteered to have detailed weekly ECG (electrocardiography) scans from 18 weeks until just before delivery.

This functional data is incorporated into a 3D computerised model built up using information about the structure, shape and size of the different components of the heart from two types of MRI (Magnetic Resonance Imaging) scans of dead fetuses' hearts.

Early results from the project, which involves researchers from Leeds, the University of Edinburgh, the University of Nottingham, the University of Manchester and the University of Sheffield, show that the human heart may develop on a different timeline from other mammals.

While the tissue in the walls of a pig heart develops a highly organised structure at a relatively early stage of a fetus's development, a paper from the Leeds-led team published in the Journal of the Royal Society Interface Focus reports that the there is little organisation of the human heart's cells until 20 weeks into pregnancy.

A pig's pregnancy lasts about three months and the organised structure of the walls of the heart emerge in the first month of pregnancy. The new study only detected similar organised structures well into the second trimester of the human pregnancy. Human fetuses have a regular heartbeat from about 22 days.

Dr Eleftheria Pervolaraki, Visiting Research Fellow at the University of Leeds' School of Biomedical Sciences, said: "For a heart to be beating effectively, we thought you needed a smoothly changing orientation of the muscle cells through the walls of the heart chambers. Such an organisation is seen in the hearts of all healthy adult mammals.

"Fetal hearts in other mammals such as pigs, which we have been using as models, show such an organisation even early in gestation, with a smooth change in cell orientation going through the heart wall. But what we actually found is that such organisation was not detectable in the human fetus before 20 weeks," she said.

Professor Arun Holden, also from Leeds' School of Biomedical Sciences, said: "The development of the fetal human heart is on a totally different timeline, a slower timeline, from the model that was being used before. This upsets our assumptions and raises new questions. Since the wall of the heart is structurally disorganised, we might expect to find arrhythmias, which are a bad sign in an adult. It may well be that in the early stages of development of the heart arrhythmias are not necessarily pathological and that there is no need to panic if we find them. Alternatively, we could find that the disorganisation in the tissue does not actually lead to arrhythmia."

A detailed computer model of the activity and architecture of the developing heart will help make sense of the limited information doctors can obtain about the fetus using non-invasive monitoring of a pregnant woman.

Professor Holden said: "It is different from dealing with an adult, where you can look at the geometry of an individual's heart using MRI (Magnetic Resonance Imaging) or CT (Computerised Tomography) scans. You can't squirt x-rays at a fetus and we also currently tend to avoid MRI, so we need a model into which we can put the information we do have access to."

He added: "Effectively, at the moment, fetal ECGs are not really used. The textbooks descriptions of the development of the human heart are still founded on animal models and 19th century collections of abnormalities in museums. If you are trying to detect abnormal activity in fetal hearts, you are only talking about third trimester and postnatal care of premature babies. By looking at how the human heart actually develops in real life and creating a quantitative, descriptive model of its architecture and activity from the start of a pregnancy to birth, you are expanding electrocardiology into the fetus."


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Pervolaraki, R. A. Anderson, A. P. Benson, B. Hayes-Gill, A. V. Holden, B. J. R. Moore, M. N. Paley, H. Zhang. Antenatal architecture and activity of the human heart. Interface Focus, 2013; 3 (2): 20120065 DOI: 10.1098/rsfs.2012.0065

Cite This Page:

University of Leeds. "Human heart tissue development slower than other mammals." ScienceDaily. ScienceDaily, 20 February 2013. <www.sciencedaily.com/releases/2013/02/130220203738.htm>.
University of Leeds. (2013, February 20). Human heart tissue development slower than other mammals. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2013/02/130220203738.htm
University of Leeds. "Human heart tissue development slower than other mammals." ScienceDaily. www.sciencedaily.com/releases/2013/02/130220203738.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Says It Will Scale Up Its Ebola Response

UN Says It Will Scale Up Its Ebola Response

AFP (Nov. 20, 2014) UN Resident Coordinator David McLachlan-Karr and WHO representative in the country Daniel Kertesz updated the media on the UN Ebola response on Wednesday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Obesity Costs Almost As Much As War And Terrorism

Obesity Costs Almost As Much As War And Terrorism

Newsy (Nov. 20, 2014) The newest estimate of the cost of obesity is pretty jarring — $2 trillion. But how did researchers get to that number? Video provided by Newsy
Powered by NewsLook.com
Ebola Crisis Affecting US Adoptions

Ebola Crisis Affecting US Adoptions

AP (Nov. 20, 2014) The Sanborn family had hoped they'd be able to bring home their 5-year-old adopted son from Liberia by now. But Ebola has forced them to wait. The boy is just one of thousands of orphans in West Africa who've been impacted by the deadly virus. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins