Featured Research

from universities, journals, and other organizations

Glaciers contribute significant iron to North Atlantic Ocean

Date:
March 11, 2013
Source:
Woods Hole Oceanographic Institution
Summary:
A new study by biogeochemists identifies a large, unexpected source of iron to the North Atlantic -- meltwater from glaciers and ice sheets, which may stimulate plankton growth during spring and summer. This source is likely to increase as melting of the Greenland ice sheet escalates under a warming climate.

Research area: During the course of two expeditions to the Greenland ice sheet in May and July 2008, Bhatia and her colleagues collected samples from sites at three land-terminating glaciers. The meltwater from these glaciers travels through a flood plain and eventually drains into Qasigiatsigit Lake, before finally emptying into the fjord.
Credit: Courtesy Maya Bhatia, Woods Hole Oceanographic Institution

All living organisms rely on iron as an essential nutrient. In the ocean, iron's abundance or scarcity means all the difference as it fuels the growth of plankton, the base of the ocean's food web.

Related Articles


A new study by biogeochemists and glaciologists at Woods Hole Oceanographic Institution (WHOI) identifies a unexpectedly large source of iron to the North Atlantic -- meltwater from glaciers and ice sheets, which may stimulate plankton growth during spring and summer. This source is likely to increase as melting of the Greenland ice sheet escalates under a warming climate.

The study was published online in Nature Geoscience on March 10, 2013.

"There's only been one other study looking at the amount of iron that's being released in meltwater runoff itself," says Maya Bhatia, a graduate of the MIT/WHOI Joint Program in Oceanography and Applied Ocean Sciences and Engineering, and the study's lead author, "and that had reported high nanomolar concentrations. So to find iron in concentrations several orders of magnitude higher -- in the micromolar range -- was very surprising."

Iron from wind-blown dust and river runoff fuels annual plankton blooms in the world's ocean. Ice sheets and glaciers are now also thought to contribute iron from sediments on the bottom of calved icebergs and glacially-derived dust. Until now, meltwater runoff from glaciers and ice sheets was considered too dilute to carry much iron, although previous research has shown a strong correlation between the plankton blooms and the runoff from Greenland ice sheet.

"Glacial runoff has only recently been considered a potentially important source of nutrients that are useable, or bioavailable, to downstream ecosystems," says Bhatia. "We believe our study now adds iron to that list of nutrients, and underscores the potential for a unique but as-yet-undetermined chemical impact from increasing ice sheet meltwater runoff."

During the course of two expeditions to the Greenland ice sheet in May and July 2008, Bhatia and her colleagues collected samples from sites at several land-terminating glaciers on the western side of the Greenland ice sheet. The glaciers' meltwater empties into a large lake, which eventually drains into an estuary system before reaching the open ocean. Their study reports levels of dissolved iron orders of magnitude higher than previously found for Greenland glacial runoff rivers. When the WHOI team extrapolated their findings to calculate the contribution of iron from the entire ice sheet, they estimated its value to be within the range of that from dust deposition in the North Atlantic, which is believed to be the primary source of bioavailable iron to this ocean. This value is only an order of magnitude lower than the estimated annual contribution of iron from rivers worldwide.

When an ice sheet or glacier melts, most of the water doesn't simply run off the surface of the ice sheet. Instead it first drains to the bedrock below the ice sheet through cracks and conduits called moulins and then exits in large runoff rivers.

"A lot of people think of a glacier and an ice sheet as a big block of ice," says Bhatia, "but it's actually quite a porous, complicated system underneath a glacier, with lots of moulins and crevasses leading to the bottom. Once you get into the bottom, there are large tunnels that these waters are passing through." The more time the water spends in contact with the bedrock and sediments beneath the glacier, the more nutrients it picks up, including iron.

The WHOI team says further research is needed to determine how much of this iron actually reaches the open ocean, as their study followed the meltwater from the edge of the glaciers to the large lake they empty into. For this study, the team assumed that the amount of iron filtered out as the water moves through estuaries before reaching the marine environment would be roughly the same for glacial systems as it is for river systems.

The researchers hope to do more work to confirm the study's numbers by sampling over a larger geographical area. Additional research could also confirm whether this influx of iron is in a form that can be easily utilized by phytoplankton and therefore stimulates primary production in the ocean.

"We don't have enough historical measurements to say that this iron contribution is an increase over past conditions, but if it is working the way we think it is, the contribution would be greater as meltwater discharge increases," Bhatia says. "It is interesting to think that, as ice sheets melt, there are biogeochemical considerations beyond changing sea level."

Maya Bhatia is currently a postdoctoral fellow in the Department of Microbiology and Immunology at the University of British Columbia in Vancouver, BC, Canada. Her co-authors include Elizabeth B. Kujawinski, Department of Marine Chemistry and Geochemistry; Sarah B. Das, Department of Geology and Geophysics; Crystaline F. Breier, Department of Marine Chemistry and Geochemistry; Paul Henderson, Department of Marine Chemistry and Geochemistry; and Matthew A. Charette, Department of Marine Chemistry and Geochemistry, all of WHOI.

This research was supported by the WHOI Clark Arctic Research Initiative, the National Science Foundation, the WHOI Ocean and Climate Change Institute, and an AGU Horton Hydrology Grant.


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maya P. Bhatia, Elizabeth B. Kujawinski, Sarah B. Das, Crystaline F. Breier, Paul B. Henderson, Matthew A. Charette. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience, 2013; DOI: 10.1038/ngeo1746

Cite This Page:

Woods Hole Oceanographic Institution. "Glaciers contribute significant iron to North Atlantic Ocean." ScienceDaily. ScienceDaily, 11 March 2013. <www.sciencedaily.com/releases/2013/03/130311124058.htm>.
Woods Hole Oceanographic Institution. (2013, March 11). Glaciers contribute significant iron to North Atlantic Ocean. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/03/130311124058.htm
Woods Hole Oceanographic Institution. "Glaciers contribute significant iron to North Atlantic Ocean." ScienceDaily. www.sciencedaily.com/releases/2013/03/130311124058.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins