Featured Research

from universities, journals, and other organizations

Researchers trap light, improve laser potential of MEH-PPV polymer

Date:
March 18, 2013
Source:
North Carolina State University
Summary:
Researchers have come up with a low-cost way to enhance a polymer called MEH-PPV's ability to confine light, advancing efforts to use the material to convert electricity into laser light for use in photonic devices.

Researchers from North Carolina State University have come up with a low-cost way to enhance a polymer called MEH-PPV's ability to confine light, advancing efforts to use the material to convert electricity into laser light for use in photonic devices.

Related Articles


"Think of a garden hose. If it has holes in it, water springs out through a million tiny leaks. But if you can eliminate those leaks, you confine the water in the hose and improve the water pressure. We've plugged the holes that were allowing light to leak out of the MEH-PPV," says Dr. Lewis Reynolds, a teaching associate professor of materials science and engineering at NC State and co-author of a paper describing the research.

MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have long sought to use the material to convert electricity into laser light for use in photonic devices such as optical amplifiers and chemical sensors. However, attempts to do this have failed because the amount of electricity needed to generate laser light in MEH-PPV was so high that it caused the material to degrade.

Now researchers have developed an inexpensive way to confine more light in the material, which lowers the energy threshold needed to produce focused laser light by 50 percent. The researchers did this by sandwiching the MEH-PPV between two materials that have matching indices of refraction, efficiently reflecting light back into the MEH-PPV and preventing light from escaping. This results in lower thresholds for laser light.

"This approach is fairly inexpensive and could also be easily scaled up for large-scale processing," Reynolds says.

The "sandwich" also makes the material more stable by limiting the MEH-PPV's exposure to oxygen. This makes the material less subject to degradation due to photo-oxidation, which occurs when materials are exposed to both light and oxygen.

"This is a meaningful step forward for low-cost fabrication of these devices, but further optimization is required," says Dr. Zach Lampert, a former Ph.D. student at NC State and lead author of the paper. "We're working on that now."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zach E. Lampert, John M. Papanikolas, C. Lewis Reynolds. Enhancement of optical gain and amplified spontaneous emission due to waveguide geometry in the conjugated polymer poly[2-methoxy-5-(2ʹ-ethylhexyloxy)-p-phenylene vinylene]. Applied Physics Letters, 2013; 102 (7): 073303 DOI: 10.1063/1.4793422

Cite This Page:

North Carolina State University. "Researchers trap light, improve laser potential of MEH-PPV polymer." ScienceDaily. ScienceDaily, 18 March 2013. <www.sciencedaily.com/releases/2013/03/130318105325.htm>.
North Carolina State University. (2013, March 18). Researchers trap light, improve laser potential of MEH-PPV polymer. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2013/03/130318105325.htm
North Carolina State University. "Researchers trap light, improve laser potential of MEH-PPV polymer." ScienceDaily. www.sciencedaily.com/releases/2013/03/130318105325.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins