Featured Research

from universities, journals, and other organizations

Quantum computers coming soon? Metamaterials used to observe giant photonic spin Hall effect

Date:
March 21, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Engineering a unique metamaterial of gold nanoantennas, researchers were able to obtain the strongest signal yet of the photonic spin Hall effect, an optical phenomenon of quantum mechanics that could play a prominent role in the future of computing.

Light propagating through a metamaterial follows a curved trajectory that drags light with different circular polarization in opposite transverse directions to produce a giant photonic Spin Hall effect.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have once again demonstrated the incredible capabilities of metamaterials -- artificial nanoconstructs whose optical properties arise from their physical structure rather than their chemical composition. Engineering a unique two-dimensional sheet of gold nanoantennas, the researchers were able to obtain the strongest signal yet of the photonic spin Hall effect, an optical phenomenon of quantum mechanics that could play a prominent role in the future of computing.

"With metamaterial, we were able to greatly enhance a naturally weak effect to the point where it was directly observable with simple detection techniques," said Xiang Zhang, a faculty scientist with Berkeley Lab's Materials Sciences Division who led this research. "We also demonstrated that metamaterials not only allow us to control the propagation of light but also allows control of circular polarization. This could have profound consequences for information encoding and processing."

The spin Hall effect, named in honor of physicist Edwin Hall, describes the curved path that spinning electrons follow as they move through a semiconductor. The curved movement arises from the interaction between the physical motion of the electron and its spin -- a quantized angular momentum that gives rise to magnetic moment. Think of a baseball pitcher putting spin on a ball to make it curve to the left or right.

"Light moving through a metal also displays the spin Hall effect but the photonic spin Hall effect is very weak because the spin angular momentum of photons and spin-orbit interactions are very small," says Xiaobo Yin, a member of Zhang's research group and the lead author of the Science paper. "In the past, people have managed to observe the photonic spin Hall effect by generating the process over and over again to obtain an accumulative signal, or by using highly sophisticated quantum measurements. Our metamaterial makes the photonic spin Hall effect observable even with a simple camera."

Metamaterials have garnered a lot of attention in recent years because their unique structure affords electromagnetic properties unattainable in nature. For example, a metamaterial can have a negative index of refraction, the ability to bend light backwards, unlike all materials found in nature, which bend light forward. Zhang, who holds the Ernest S. Kuh Endowed Chair Professor of Mechanical Engineering at the University of California (UC) Berkeley, where he also directs the National Science Foundation's Nano-scale Science and Engineering Center, has been at the forefront of metamaterials research. For this study, he and his group fashioned metamaterial surfaces about 30 nanometers thick (a human hair by comparison is between 50,000 and 100,000 nanometers thick). These metasurfaces were constructed from V-shaped gold nanoantennas whose geometry could be configured by adjusting the length and orientation of the arms of the Vs.

"We chose eight different antenna configurations with optimized geometry parameters to generate a linear phase gradient along the x direction," says Yin. "This enabled us to control the propagation of the light and introduce strong photon spin-orbit interactions through rapid changes in direction. The photonic spin Hall effect depends on the curvature of the light's trajectory, so the sharper the change in propagation direction, the stronger the effect."

Since the entire metasurface sample measured only 0.3 millimeters, a 50-millimeter lens was used to project the transmission of the light through the metamaterial onto a charge-coupled device (CCD) camera for imaging. From the CCD images, the researchers determined that both the control of light propagation and the giant photonic spin Hall effect were the direct results of the designed meta-material. This finding opens up a wealth of possibilities for new technologies.

"The controllable spin-orbit interaction and momentum transfer between spin and orbital angular momentum allows us to manipulate the information encoded on the polarization of light, much like the 0 and 1 of today's electronic devices," Yin says. "But photonic devices could encode more information and provide greater information security than conventional electronic devices."

Yin says the ability to control left and right circular polarization of light in metamaterial surfaces should allow for the formation of optical elements, like highly coveted "flat lenses," or the management of light polarization without using wave plates.

"Metamaterials provide us with tremendous design freedom that will allow us to modulate the strength of the photonic spin Hall effect at different spatial locations," Yin says. "We knew the photonic spin Hall effect existed in nature but it was so hard to detect. Now, with the right metamaterials we can not only enhance this effect we can harness it for our own purposes."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang. Photonic Spin Hall Effect at Metasurfaces. Science, 2013; 339 (6126): 1405 DOI: 10.1126/science.1231758

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Quantum computers coming soon? Metamaterials used to observe giant photonic spin Hall effect." ScienceDaily. ScienceDaily, 21 March 2013. <www.sciencedaily.com/releases/2013/03/130321151921.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, March 21). Quantum computers coming soon? Metamaterials used to observe giant photonic spin Hall effect. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/03/130321151921.htm
DOE/Lawrence Berkeley National Laboratory. "Quantum computers coming soon? Metamaterials used to observe giant photonic spin Hall effect." ScienceDaily. www.sciencedaily.com/releases/2013/03/130321151921.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins